Have a personal or library account? Click to login
Therapeutic Angiogenesis for Severely Ischemic Limbs — from Bench to Bedside in Acute Vascular Care Cover

Therapeutic Angiogenesis for Severely Ischemic Limbs — from Bench to Bedside in Acute Vascular Care

Open Access
|Jan 2018

References

  1. 1. Patel MR, Conte MS, Cutlip DE, et al. Evaluation and treatment of patients with lower extremity peripheral artery disease: consensus definitions from Peripheral Academic Research Consortium (PARC). J Am Coll Cardiol. 2015;65:931-941. doi: 10.1016/j.jacc.2014.12.036.10.1016/j.jacc.2014.12.036
  2. 2. Dua A, Lee CJ. Epidemiology of Peripheral Arterial Disease and Critical Limb Ischemia. Tech Vasc Interv Radiol. 2016;19:91-95. doi: 10.1053/j.tvir.2016.04.001.10.1053/j.tvir.2016.04.001
  3. 3. Eraso LH, Fukaya E, Mohler ER III., Xie D, Sha D, Berger JS. Peripheral arterial disease, prevalence and cumulative risk factor profile analysis. Eur J Prev Cardiol. 2014;21:704-711. doi:10.1177/2047487312452968.10.1177/2047487312452968
  4. 4. Fowkes F, Rudan D, Rudan I, et al. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis. Lancet. 2013;382:1329-1340. doi: http://dx.doi.org/10.1016/S0140-6736(13)61249-0.10.1016/S0140-6736(13)61249-0
  5. 5. Varu VN, Hogg ME, Kibbe MR. Critical limb ischemia. J Vasc Surg. 2010;51:230-241. doi: 10.1016/j.jvs.2009.08.073.10.1016/j.jvs.2009.08.073
  6. 6. Abu Dabrh AM, Steffen MW, Undavalli C, et al. The natural history of untreated severe or critical limb ischemia. J Vasc Surg. 2015;62:1642-1651. doi: 10.1016/j.jvs.2015.07.065.10.1016/j.jvs.2015.07.065
  7. 7. Becker F, Robert-Ebadi H, Ricco JB, et al. Chapter I: definitions, epidemiology, clinical presentation and prognosis. Eur J Vasc Endovasc Surg. 2011;42:S4-S12. doi: 10.1016/S1078-5884(11)60009-9.10.1016/S1078-5884(11)60009-9
  8. 8. Shishehbor MH, White CJ, Gray BH, Menard MT, Lookstein R, Jaff MR. Critical Limb Ischemia: An Expert Statement. J Am Coll Cardiol. 2016;68:2002-2015. doi:10.1016/j.jacc.2016.04.071.10.1016/j.jacc.2016.04.07127692726
  9. 9. Dattilo PB, Casserly IP. Critical limb ischemia: endovascular strategies for limb salvage. Prog Cardiovasc Dis. 2011;54:47-60. doi: 10.1016/j.pcad.2011.02.009.10.1016/j.pcad.2011.02.00921722787
  10. 10. Mandolfino T, Canciglia A, Lamberto S, Calogero S, D'Alfonso M, Bottari A. Extreme endovascular revascularization for limb salvage in critical limb ischemia. Int Angiol. 2012;31:163-168.
  11. 11. Callum K, Bradbury A. Acute limb ischaemia. BMJ : British Medical Journal. 2000;320:764-767.10.1136/bmj.320.7237.764111776910720362
  12. 12. Beyersdorf F, Schlensak C. Controlled reperfusion after acute and persistent limb ischemia. Semin Vasc Surg. 2009;22:52-57. doi: 10.1053/j.semvascsurg.2009.01.005.10.1053/j.semvascsurg.2009.01.005
  13. 13. Gilliland C, Shah J, Martin JG, Miller MJ Jr. Acute Limb Ischemia. Tech Vasc Interv Radiol. 2017;20:274-280. doi: 10.1053/j.tvir.2017.10.008.10.1053/j.tvir.2017.10.008
  14. 14. Compagna R, Amato B, Massa S, et al. Cell Therapy in Patients with Critical Limb Ischemia. Stem Cells Int. 2015;2015:931420. doi: 10.1155/2015/931420.10.1155/2015/931420
  15. 15. Simons JP, Goodney PP, Nolan BW, et al. Failure to achieve clinical improvement despite graft patency in patients undergoing infrainguinal lower extremity bypass for critical limb ischemia. J Vasc Surg. 2010;51:1419-1424. doi: 10.1016/j.jvs.2010.01.083.10.1016/j.jvs.2010.01.083
  16. 16. Lawall H, Bramlage P, Amann B. Stem cell and progenitor cell therapy in peripheral artery disease. A critical appraisal. Thromb Haemost. 2010;103:696-709. doi: 10.1160/TH09-10-0688.10.1160/TH09-10-0688
  17. 17. Adam DJ, Beard JD, Cleveland T, Bell J, Bradbury AW, Forbes JF. Bypass versus angioplasty in severe ischaemia of the leg (BASIL): multicentre, randomised controlled trial. Lancet. 2005;366:1925-1934. doi: 10.1016/S0140-6736(05)67704-5.10.1016/S0140-6736(05)67704-5
  18. 18. Fowkes FG, Murray GD, Butcher I, et al. Ankle brachial index combined with Framingham Risk Score to predict cardiovascular events and mortality: a meta-analysis. JAMA. 2008;300:197-208. doi: 10.1001/jama.300.2.197.10.1001/jama.300.2.197293262818612117
  19. 19. Kum S, Tan YK, Schreve MA, et al. Midterm Outcomes From a Pilot Study of Percutaneous Deep Vein Arterialization for the Treatment of No-Option Critical Limb Ischemia. J Endovasc Ther. 2017;24:619-626. doi: 10.1177/1526602817719283.10.1177/152660281771928328697694
  20. 20. Chen XP, Fu WM, Gu W. Spinal Cord stimulation for patients with inoperable chronic critical leg ischemia. World J Emerg Med. 2011;2:262-266. doi: 10.5847/wjem.j.1920-8642.2011.04.003.10.5847/wjem.j.1920-8642.2011.04.003412971925215020
  21. 21. Walker C. Pedal access in critical limb ischemia. J Cardiovasc Surg (Torino). 2014;55:225-227.10.1007/978-1-4614-7312-1_65
  22. 22. Tawfick WA, Hamada N, Soylu E, Fahy A, Hynes N, Sultan S. Sequential compression biomechanical device versus primary amputation in patients with critical limb ischemia. Vasc Endovascular Surg. 2013;47:532-539. doi: 10.1177/1538574413499413.10.1177/153857441349941324052447
  23. 23. Qadura M, Terenzi DC, Verma S, Al-Omran M, Hess DA. Cell Therapy for Critical Limb Ischemia: An Integrated Review of Pre-clinical and Clinical Studies. Stem Cells. 2017; doi: 10.1002/stem.2751. [Epub ahead of print]10.1002/stem.2751.[Epubaheadprint
  24. 24. Pignon B, Sevestre MA, Kanagaratnam L, et al. Autologous Bone Marrow Mononuclear Cell Implantation and Its Impact on the Outcome of Patients With Critical Limb Ischemia – Results of a Randomized, Double-Blind, Placebo-Controlled Trial. Circ J. 2017;81:1713-1720. doi: 10.1253/circj.CJ-17-0045.10.1253/circj.CJ-17-0045
  25. 25. Ismail AM, Abdou SM, Aty HA, et al. Autologous transplantation of CD34(+) bone marrow derived mononuclear cells in management of non-reconstructable critical lower limb ischemia. Cytotechnology. 2016;68:771-781. doi: 10.1007/s10616-014-9828-7.10.1007/s10616-014-9828-7
  26. 26. Perotti C, Arici V, Cervio M, et al. Allogeneic lethally irradiated cord blood mononuclear cells in no-option critical limb ischemia: a “box of rain”. Stem Cells Dev. 2013;22:2806-2812. doi: 10.1089/scd.2013.0172.10.1089/scd.2013.0172
  27. 27. Liew A, O'Brien T. Therapeutic potential for mesenchymal stem cell transplantation in critical limb ischemia. Stem Cell Res Ther. 2012;3:28. doi: 10.1186/scrt119.10.1186/scrt119
  28. 28. Koshikawa M, Shimodaira S, Yoshioka T, et al. Therapeutic angiogenesis by bone marrow implantation for critical hand ischemia in patients with peripheral arterial disease: a pilot study. Curr Med Res Opin. 2006;22:793-798. doi: 10.1185/030079906X1000078.10.1185/030079906X1000078
  29. 29. Hernández P1, Cortina L, Artaza H, et al. Autologous bone-marrow mononuclear cell implantation in patients with severe lower limb ischaemia: a comparison of using blood cell separator and Ficoll density gradient centrifugation. Atherosclerosis. 2007;194:e52-56. doi: 10.1016/j.atherosclerosis.2006.08.025.10.1016/j.atherosclerosis.2006.08.025
  30. 30. Lachmann N, Nikol S. Therapeutic angiogenesis for peripheral artery disease: stem cell therapy. Vasa. 2007;36:241-251. doi:10.1024/0301-1526.36.4.241.10.1024/0301-1526.36.4.241
  31. 31. Napoli C, Farzati B, Sica V, et al. Beneficial effects of autologous bone marrow cell infusion and antioxidants/L-arginine in patients with chronic critical limb ischemia. Eur J Cardiovasc Prev Rehabil. 2008;15:709-718. doi: 10.1097/HJR.0b013e3283193a0f.10.1097/HJR.0b013e3283193a0f
  32. 32. Risau W. Mechanisms of angiogenesis. Nature. 1997;386:671-674. doi: 10.1038/386671a0.10.1038/386671a0
  33. 33. Ouma GO, Zafrir B, Mohler ER 3rd, Flugelman MY. Therapeutic angiogenesis in critical limb ischemia. Angiology. 2013;64:466-480. doi: 10.1177/0003319712464514.10.1177/0003319712464514
  34. 34. Annex BH. Therapeutic angiogenesis for critical limb ischaemia. Nat Rev Cardiol. 2013;10:387-396. doi: 10.1038/nrcardio.2013.70.23670612
  35. 35. Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med. 2000;6:389-395.10.1038/74651
  36. 36. Davies MG. Criticial Limb Ischemia: Epidemiology. Methodist DeBakey Cardiovascular Journal. 2012;8:10-14.10.14797/mdcj-8-4-10
  37. 37. Ribatti D, Vacca A, Nico B, Presta M, Roncali L. Angiogenesis: basic and clinical aspects. Ital J Anat Embryol. 2003;108:1-24.
  38. 38. Semenza GL. Vasculogenesis, angiogenesis, and arteriogenesis: mechanisms of blood vessel formation and remodeling. J Cell Biochem. 2007;102:840-847. doi: 10.1002/jcb.21523.10.1002/jcb.21523
  39. 39. Axnick J, Lammert E. Vascular lumen formation. Curr Opin Hematol. 2012;19:192-198. doi: 10.1097/MOH.0b013e3283523ebc.10.1097/MOH.0b013e3283523ebc
  40. 40. Zhu S, Liu X, Li Y, Goldschmidt-Clermont PJ, Dong C. Aging in the atherosclerosis milieu may accelerate the consumption of bone marrow endothelial progenitor cells. Arterioscler Thromb Vasc Biol. 2007;27:113-119. doi: 10.1161/01.ATV.0000252035.12881.d0.10.1161/01.ATV.0000252035.12881.d0
  41. 41. van Royen N, Piek JJ, Buschmann I, Hoefer I, Voskuil M, Schaper W. Stimulation of arteriogenesis; a new concept for the treatment of arterial occlusive disease. Cardiovasc Res. 2001;49:543-553.10.1016/S0008-6363(00)00206-6
  42. 42. Helisch A, Schaper W. Arteriogenesis: the development and growth of collateral arteries. Microcirculation. 2003;10:83-97. doi: 10.1038/sj.mn.7800173.10.1038/sj.mn.780017312610665
  43. 43. Cai W, Schaper W. Mechanisms of arteriogenesis. Acta Biochim Biophys Sin (Shanghai). 2008;40:681-92.10.1093/abbs/40.8.681
  44. 44. Fung E, Helisch A. Macrophages in Collateral Arteriogenesis. Frontiers in Physiology. 2012;3:353. doi:10.3389/fphys.2012.00353.10.3389/fphys.2012.00353
  45. 45. Jaipersad AS, Lip GY, Silverman S, Shantsila E. The role of monocytes in angiogenesis and atherosclerosis. J Am Coll Cardiol. 2014;63:1-11. doi: 10.1016/j.jacc.2013.09.019.10.1016/j.jacc.2013.09.019
  46. 46. Sanada F, Taniyama Y, Azuma J, et al. Therapeutic Angiogenesis by Gene Therapy for Critical Limb Ischemia: Choice of Biological Agent. Immunology, Endocrine & Metabolic Agents in Medicinal Chemistry. 2014;14:32-39. doi: 10.2174/1871522213999131231105139.10.2174/1871522213999131231105139
  47. 47. Liew A, Bhattacharya V, Shaw J, Stansby G. Cell Therapy for Critical Limb Ischemia: A Meta-Analysis of Randomized Controlled Trials. Angiology. 2016;67:444-455. doi: 10.1177/0003319715595172.10.1177/0003319715595172
  48. 48. Tongers J, Roncalli JG, Losordo DW. Therapeutic angiogenesis for critical limb ischemia: microvascular therapies coming of age. Circulation. 2008;118:9-16. doi: 10.1161/CIRCULATIONAHA.108.784371.10.1161/CIRCULATIONAHA.108.784371
  49. 49. Cross MJ, Claesson-Welsh L. FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol Sci. 2001;22:201-207.10.1016/S0165-6147(00)01676-X
  50. 50. Ho TK, Rajkumar V, Ponticos M, et al. Increased endogenous angiogenic response and hypoxia-inducible factor-1alpha in human critical limb ischemia. J Vasc Surg. 2006;43:125-133. doi: 10.1016/j.jvs.2005.08.042.10.1016/j.jvs.2005.08.042
  51. 51. Henning RJ. Therapeutic angiogenesis: angiogenic growth factors for ischemic heart disease. Future Cardiol. 2016;12:585-599. doi: 10.2217/fca-2016-0006.10.2217/fca-2016-0006
  52. 52. Tille JC, Wood J, Mandriota SJ, et al. Vascular endothelial growth factor (VEGF) receptor-2 antagonists inhibit VEGF-and basic fibroblast growth factor-induced angiogenesis in vivo and in vitro. J Pharmacol Exp Ther. 2001;299:1073-1085.
  53. 53. Kim SK, Lee J, Song M, et al. Combination of three angiogenic growth factors has synergistic effects on sprouting of endothelial cell/mesenchymal stem cell-based spheroids in a 3D matrix. J Biomed Mater Res B Appl Biomater. 2016;104:1535-1543. doi: 10.1002/jbm.b.33498.10.1002/jbm.b.33498
  54. 54. Lederman RJ, Mendelsohn FO, Anderson RD, et al. Therapeutic angiogenesis with recombinant fibroblast growth factor-2 for intermittent claudication (the TRAFFIC study): a randomised trial. Lancet. 2002;359:2053-2058.10.1016/S0140-6736(02)08937-7
  55. 55. Rajagopalan S, Mohler E 3rd, Lederman RJ, et al. Regional Angiogenesis with Vascular Endothelial Growth Factor (VEGF) in peripheral arterial disease: Design of the RAVE trial. Am Heart J. 2003;145:1114-1118. doi: 10.1016/S0002-8703(03)00102-9.10.1016/S0002-8703(03)00102-9
  56. 56. Nikol S, Baumgartner I, Van Belle E, et al. Therapeutic angiogenesis with intramuscular NV1FGF improves amputation-free survival in patients with critical limb ischemia. Mol Ther. 2008;16:972-978. doi: 10.1038/mt.2008.33.10.1038/mt.2008.3318388929
  57. 57. Creager MA, Olin JW, Belch JJ, et al. Effect of hypoxia-inducible factor-1alpha gene therapy on walking performance in patients with intermittent claudication. Circulation. 2011;124:1765-1773. doi: 10.1161/CIRCULATIONAHA.110.009407.10.1161/CIRCULATIONAHA.110.00940721947297
  58. 58. Gu Y, Zhang J, Guo L, Cui S, Li X, Ding D, et al. A phase I clinical study of naked DNA expressing two isoforms of hepatocyte growth factor to treat patients with critical limb ischemia. J Gene Med. 2011;13:602-610. doi: 10.1002/jgm.1614.10.1002/jgm.161422015632
  59. 59. Conte MS, Bandyk DF, Clowes AW, et al. Results of PREVENT III: a multicenter, randomized trial of edifoligide for the prevention of vein graft failure in lower extremity bypass surgery. J Vasc Surg. 2006;43:742-751. doi: 10.1016/j.jvs.2005.12.058.10.1016/j.jvs.2005.12.05816616230
  60. 60. Comerota AJ, Throm RC, Miller KA, et al. Naked plasmid DNA encoding fibroblast growth factor type 1 for the treatment of end-stage unreconstructible lower extremity ischemia: preliminary results of a phase I trial. J Vasc Surg. 2002;35:930-936.10.1067/mva.2002.12367712021709
  61. 61. Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275:964-967.10.1126/science.275.5302.9649020076
  62. 62. Gupta R, Losordo DW. Cell Therapy for Critical Limb Ischemia Moving Forward One Step at a Time. Circ Cardiovasc Interv. 2011;4:2-5. doi: 10.1161/CIRCINTERVENTIONS.110.960716.10.1161/CIRCINTERVENTIONS.110.960716312377821325196
  63. 63. Nizankowski R, Petriczek T, Skotnicki A, Szczeklik A. The treatment of advanced chronic lower limb ischaemia with marrow stem cell autotransplantation. Kardiol Pol. 2005;63:351-360.
  64. 64. Tanaka M, Taketomi K, Yonemitsu Y. Therapeutic angiogenesis: recent and future prospects of gene therapy in peripheral artery disease. Curr Gene Ther. 2014;14:300-308.10.2174/15665232140414090212483825197884
  65. 65. Procházka V, Gumulec J, Chmelová J, et al. Autologous bone marrow stem cell transplantation in patients with end-stage chronical critical limb ischemia and diabetic foot. Vnitr Lek. 2009;55:173-178.
  66. 66. Brewster L, Robinson S, Wang R, et al. Expansion and angiogenic potential of mesenchymal stem cells from patients with critical limb ischemia. J Vasc Surg. 2017;65:826-838. doi: 10.1016/j.jvs.2015.02.061.10.1016/j.jvs.2015.02.061499677726921003
  67. 67. Kawamura A, Horie T, Tsuda I, et al. Clinical study of therapeutic angiogenesis by autologous peripheral blood stem cell (PBSC) transplantation in 92 patients with critically ischemic limbs. J Artif Organs. 2006;9:226-233. doi: 10.1007/s10047-006-0351-2.10.1007/s10047-006-0351-217171401
  68. 68. Huang PP, Yang XF, Li SZ, Wen JC, Zhang Y, Han ZC. Randomised comparison of G-CSF-mobilized peripheral blood mononuclear cells versus bone marrow-mononuclear cells for the treatment of patients with lower limb arteriosclerosis obliterans. Thromb Haemost. 2007;98:1335-1342.10.1160/TH07-02-013718064333
  69. 69. Botti C, Maione C, Coppola A, Sica V, Cobellis G. Autologous bone marrow cell therapy for peripheral arterial disease. Stem Cells and Cloning: Advances and Applications. 2012;5:5-14. doi:10.2147/SCCAA.S28121.10.2147/SCCAA.S28121378176124198534
  70. 70. Motukuru V, Suresh KR, Vivekanand V, Raj S, Girija KR. Therapeutic angiogenesis in Buerger's disease (thromboangiitis obliterans) patients with critical limb ischemia by autologous transplantation of bone marrow mononuclear cells. J Vasc Surg. 2008;48:53S-60S. doi: 10.1016/j.jvs.2008.09.005.10.1016/j.jvs.2008.09.00519084740
  71. 71. Ruiz-Salmeron R, de la Cuesta-Diaz A, Constantino-Bermejo M, et al. Angiographic demonstration of neoangiogenesis after intra-arterial infusion of autologous bone marrow mononuclear cells in diabetic patients with critical limb ischemia. Cell Transplant. 2011;20:1629-1639. doi: 10.3727/096368910X0177.10.3727/096368910X017722289660
  72. 72. Huang P, Li S, Han M, Xiao Z, Yang R, Han ZC. Autologous transplantation of granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear cells improves critical limb ischemia in diabetes. Diabetes Care. 2005;28:2155-2160.10.2337/diacare.28.9.215516123483
  73. 73. Lara-Hernandez R, Lozano-Vilardell P, Blanes P, Torreguitart-Mirada N, Galmés A, Besalduch J. Safety and efficacy of therapeutic angiogenesis as a novel treatment in patients with critical limb ischemia. Ann Vasc Surg. 2010;24:287-294. doi: 10.1016/j.avsg.2009.10.012.10.1016/j.avsg.2009.10.01220142004
  74. 74. Burt RK, Testori A, Oyama Y, et al. Autologous peripheral blood CD133+ cell implantation for limb salvage in patients with critical limb ischemia. Bone Marrow Transplant. 2010;45:111-116. doi: 10.1038/bmt.2009.102.10.1038/bmt.2009.102395186019448678
  75. 75. Losordo DW, Kibbe MR, Mendelsohn F, et al. A Randomized, Controlled Pilot Study of Autologous CD34+ Cell Therapy for Critical Limb Ischemia. Circulation Cardiovascular interventions. 2012;5:821-830. doi:10.1161/CIRCINTERVENTIONS.112.968321.10.1161/CIRCINTERVENTIONS.112.968321354939723192920
  76. 76. Dash NR, Dash SN, Routray P, Mohapatra S, Mohapatra PC. Targeting nonhealing ulcers of lower extremity in human through autologous bone marrow-derived mesenchymal stem cells. Rejuvenation Res. 2009;12:359-366. doi: 10.1089/rej.2009.0872.10.1089/rej.2009.087219929258
  77. 77. Yan J, Tie G, Xu TY, Cecchini K, Messina LM. Mesenchymal stem cells as a treatment for peripheral arterial disease: current status and potential impact of type II diabetes on their therapeutic efficacy. Stem Cell Rev. 2013;9:360-372. doi: 10.1007/s12015-013-9433-8.10.1007/s12015-013-9433-8
  78. 78. Bura A, Planat-Benard V, Bourin P, et al. Phase I trial: the use of autologous cultured adipose-derived stroma/stem cells to treat patients with non-revascularizable critical limb ischemia. Cytotherapy. 2014;16:245-257. doi: 10.1016/j.jcyt.2013.11.011.10.1016/j.jcyt.2013.11.011
  79. 79. Das AK, Bin Abdullah BJ, Dhillon SS, Vijanari A, Anoop CH, Gupta PK. Intra-arterial allogeneic mesenchymal stem cells for critical limb ischemia are safe and efficacious: report of a phase I study. World J Surg. 2013;37:915-922. doi: 10.1007/s00268-012-1892-6.10.1007/s00268-012-1892-6
  80. 80. Gyöngyösi M, Hemetsberger R, Wolbank S, et al. Delayed recovery of myocardial blood flow after intracoronary stem cell administration. Stem Cell Rev. 2011;7:616-623. doi: 10.1007/s12015-010-9213-7.10.1007/s12015-010-9213-7
  81. 81. Gyöngyösi M, Wojakowski W, Lemarchand P, et al. Meta-Analysis of Cell-based CaRdiac stUdiEs (ACCRUE) in patients with acute myocardial infarction based on individual patient data. Circ Res. 2015;116:1346-1360. doi: 10.1161/CIRCRESAHA.116.304346.10.1161/CIRCRESAHA.116.304346
  82. 82. Moazzami K, Majdzadeh R, Nedjat S. Local intramuscular transplantation of autologous mononuclear cells for critical lower limb ischaemia. Cochrane Database Syst Rev. 2011;12:CD008347. doi: 10.1002/14651858.CD008347.pub2.10.1002/14651858.CD008347.pub2
  83. 83. Takagi G, Miyamoto M, Tara S, et al. Therapeutic vascular angiogenesis for intractable macroangiopathy-related digital ulcer in patients with systemic sclerosis: a pilot study. Rheumatology (Oxford). 2014;53:854-859. doi: 10.1093/rheumatology/ket432.10.1093/rheumatology/ket432
  84. 84. Amato B, Compagna R, Della Corte GA, et al. Peripheral blood mono-nuclear cells implantation in patients with peripheral arterial disease: a pilot study for clinical and biochemical outcome of neoangiogenesis. BMC Surgery. 2012;12:S1. doi:10.1186/1471-2482-12-S1-S1.10.1186/1471-2482-12-S1-S1
  85. 85. Maksimov AV, Kiiasov AP, Plotnikov MV, et al. Outcomes of using autologous peripheral-blood stem cells in patients with chronic lower arterial insufficiency. Angiol Sosud Khir. 2011;17:11-15.
  86. 86. Tateishi-Yuyama E, Matsubara H, Murohara T, et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet. 2002;360:427-435. doi: 10.1016/S0140-6736(02)09670-8.10.1016/S0140-6736(02)09670-8
  87. 87. Procházka V, Gumulec J, Jalůvka F, et al. Cell therapy, a new standard in management of chronic critical limb ischemia and foot ulcer. Cell Transplant. 2010;19:1413-1424. doi: 10.3727/096368910X514170.10.3727/096368910X514170547838220529449
  88. 88. Walter DH, Krankenberg H, Balzer JO, et al. Intraarterial administration of bone marrow mononuclear cells in patients with critical limb ischemia: a randomized-start, placebo-controlled pilot trial (PROVASA). Circ Cardiovasc Interv. 2011;4:26-37. doi: 10.1161/CIRCINTERVENTIONS.110.958348.10.1161/CIRCINTERVENTIONS.110.95834821205939
  89. 89. Cobellis G, Silvestroni A, Lillo S, et al. Long-term effects of repeated autologous transplantation of bone marrow cells in patients affected by peripheral arterial disease. Bone Marrow Transplant. 2008;42:667-672. doi: 10.1038/bmt.2008.228.10.1038/bmt.2008.22818695661
  90. 90. Van Tongeren RB, Hamming JF, Fibbe WE, et al. Intramuscular or combined intramuscular/intra-arterial administration of bone marrow mononuclear cells: a clinical trial in patients with advanced limb ischemia. J Cardiovasc Surg (Torino). 2008;49:51-58.
  91. 91. Matoba S, Tatsumi T, Murohara T, et al. Long-term clinical outcome after intramuscular implantation of bone marrow mononuclear cells (Therapeutic Angiogenesis by Cell Transplantation [TACT] trial) in patients with chronic limb ischemia. Am Heart J. 2008;156:1010-1018. doi: 10.1016/j.ahj.2008.06.025.10.1016/j.ahj.2008.06.02519061721
  92. 92. Amann B, Luedemann C, Ratei R, Schmidt-Lucke JA. Autologous bone marrow cell transplantation increases leg perfusion and reduces amputations in patients with advanced critical limb ischemia due to peripheral artery disease. Cell Transplant. 2009;18:371-380.10.3727/09636890978853494219500466
  93. 93. Lawall H, Bramlage P, Amann B. Treatment of peripheral arterial disease using stem and progenitor cell therapy. J Vasc Surg. 2011;53:445-453. doi: 10.1016/j.jvs.2010.08.060.10.1016/j.jvs.2010.08.06021030198
  94. 94. Dhong Z, Chen B, Fu W, et al. Transplantation of purified CD34+ cells in the treatment of critical limb ischemia. Journal of Vascular Surgery. 2013;58:404-411. doi: http://dx.doi.org/10.1016/j.jvs.2013.01.037.10.1016/j.jvs.2013.01.03723611711
  95. 95. Rigato M, Monami M, Fadini GP. Autologous Cell Therapy for Peripheral Arterial Disease: Systematic Review and Meta-Analysis of Randomized, Nonrandomized, and Noncontrolled Studies. Circ Res. 2017;120:1326-1340. doi: 10.1161/CIRCRESAHA.116.309045.10.1161/CIRCRESAHA.116.30904528096194
  96. 96. Idei N, Soga J, Hata T, et al. Autologous bone-marrow mononuclear cell implantation reduces long-term major amputation risk in patients with critical limb ischemia: a comparison of atherosclerotic peripheral arterial disease and Buerger disease. Circ Cardiovasc Interv. 2011;4:15-25. doi: 10.1161/CIRCINTERVENTIONS.110.955724.10.1161/CIRCINTERVENTIONS.110.95572421205941
  97. 97. Heeschen C, Lehmann R, Honold J, et al. Profoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease. Circulation. 2004;109:1615-1622. doi: 10.1161/01.CIR.0000124476.32871.E3.10.1161/01.CIR.0000124476.32871.E315037527
  98. 98. Li TS, Kubo M, Ueda K, et al. Identification of risk factors related to poor angiogenic potency of bone marrow cells from different patients. Circulation. 2009;120:S255-261. doi: 10.1161/CIRCULATIONAHA.108.837039.10.1161/CIRCULATIONAHA.108.83703919752376
  99. 99. Gyöngyösi M, Hemetsberger R, Posa A, et al. Hypoxiainducible factor 1-alpha release after intracoronary versus intramyocardial stem cell therapy in myocardial infarction. J Cardiovasc Transl Res. 2010;3:114-121. doi: 10.1007/s12265-009-9154-1.10.1007/s12265-009-9154-120560024
  100. 100. Gremmels H, Teraa M, Quax PH, den Ouden K, Fledderus JO, Verhaar MC. Neovascularization capacity of mesenchymal stromal cells from critical limb ischemia patients is equivalent to healthy controls. Mol Ther. 2014;22:1960-1970. doi: 10.1038/mt.2014.161.10.1038/mt.2014.161442973825174586
  101. 101. Benedek I, Bucur O, Benedek T. Intracoronary infusion of mononuclear bone marrow-derived stem cells is associated with a lower plaque burden after four years. J Atheroscler Thromb. 2014;21:217-229.10.5551/jat.1974524126180
  102. 102. Madaric J, Klepanec A, Valachovicova M, et al. Characteristics of responders to autologous bone marrow cell therapy for no-option critical limb ischemia. Stem Cell Res Ther. 2016;7:116. doi: 10.1186/s13287-016-0379-z.10.1186/s13287-016-0379-z498796827530339
  103. 103. Powell RJ, Marston WA, Berceli SA, et al. Cellular therapy with Ixmyelocel-T to treat critical limb ischemia: the randomized, double-blind, placebo-controlled RESTORE-CLI trial. Mol Ther. 2012;20:1280-1286. doi: 10.1038/mt.2012.52.10.1038/mt.2012.52336929122453769
  104. 104. Jadlowiec C, Brenes RA, Li X, et al. Stem cell therapy for critical limb ischemia: what can we learn from cell therapy for chronic wounds? Vascular. 2012;20:284-289. doi: 10.1258/vasc.2011.201206.10.1258/vasc.2011.201206367565023086986
DOI: https://doi.org/10.1515/jce-2017-0028 | Journal eISSN: 2457-5518 | Journal ISSN: 2457-550X
Language: English
Page range: 160 - 171
Submitted on: May 21, 2017
Accepted on: Oct 25, 2017
Published on: Jan 11, 2018
Published by: Asociatia Transilvana de Terapie Transvasculara si Transplant KARDIOMED
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Theodora Benedek, István Kovács, Imre Benedek, published by Asociatia Transilvana de Terapie Transvasculara si Transplant KARDIOMED
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.