Have a personal or library account? Click to login

Monitoring Acute Myocardial Infarction Complicated with Cardiogenic Shock — from the Emergency Room to Coronary Care Units

Open Access
|Jul 2017

References

  1. 1. Reynolds HR, Hochman JS. Cardiogenic shock: current concepts and improving outcomes. Circulation. 2008;117:686-697. doi:10.1161/CIRCULATIONAHA.106.613596.10.1161/CIRCULATIONAHA.106.61359618250279
  2. 2. Hochman JS. Cardiogenic shock complicating acute myocardial infarction: expanding the paradigm. Circulation. 2003;107:2998-3002. doi: 10.1161/01.CIR.0000075927.67673.F2.10.1161/01.CIR.0000075927.67673.F212821585
  3. 3. Khalid L, Dhakam S. A Review of Cardiogenic Shock in Acute Myocardial Infarction. Current Cardiology Reviews. 2008;4:34-40. doi: 10.2174/157340308783565456.10.2174/157340308783565456277458319924275
  4. 4. Hochman JS, Sleeper LA, Webb JG, et al. Early revascularization in acute myocardial infarction complicated by cardiogenic shock. SHOCK Investigators. Should we emergently revascularize occluded coronaries for cardiogenic shock. N Engl J Med. 1999;341:625-34. doi: 10.1056/NEJM199908263410901.10.1056/NEJM19990826341090110460813
  5. 5. Fox KA, Steg PG, Eagle KA, et al. Decline in rates of death and heart failure in acute coronary syndromes, 1999-2006. JAMA. 2007; 297:1892-1900. doi:10.1001/jama.297.17.1892.10.1001/jama.297.17.189217473299
  6. 6. Goldberg RJ, Spencer FA, Gore JM, Lessard D, Yarzebski J. Thirty Year Trends (1975-2005) in the Magnitude, Management, and Hospital Death Rates Associated With Cardiogenic Shock in Patients with Acute Myocardial Infarction: A Population-Based Perspective. Circulation. 2009;119:1211-1219. doi:10.1161/CIRCULATIONAHA.108.814947.10.1161/CIRCULATIONAHA.108.814947273083219237658
  7. 7. Babaev A, Frederick PD, Pasta DJ, et al. Trends in management and outcomes of patients with acute myocardial infarction complicated by cardiogenic shock. JAMA. 2005; 294:448-454. doi: 10.1001/jama.294.4.448.10.1001/jama.294.4.44816046651
  8. 8. TRIUMPH Investigators, Alexander JH, Reynolds HR, et al. Effect of tilarginine acetate in patients with acute myocardial infarction and cardiogenic shock: the TRIUMPH randomized controlled trial. JAMA. 2007;297:1657-1666. doi: 10.1001/jama.297.15.joc70035.10.1001/jama.297.15.joc7003517387132
  9. 9. Werdan K, Ruß M, Buerke M, et al. Cardiogenic shock due to myocardial infarction: diagnosis, monitoring and treatment: a German-Austrian S3 Guideline. Dtsch Arztebl Int. 2012;109:343-51. doi: 10.3238/arztebl.2012.0343.10.3238/arztebl.2012.0343336452822675405
  10. 10. Reynolds HR, Hochman JS. Cardiogenic shock: current concepts and improving outcomes. Circulation. 2008;117:686-697. doi: 10.1161/CIRCULATIONAHA.106.613596.10.1161/CIRCULATIONAHA.106.613596
  11. 11. Bartling B, Milting H, Schumann H, et al. Myocardial gene expression of regulators of myocyte apoptosis and myocyte calcium homeostasis during hemodynamic unloading by ventricular assist devices in patients with end-stage heart failure. Circulation. 1999;100:216-223. https://doi.org/10.1161/01.CIR.100.suppl_2.II-216.10.1161/01.CIR.100.suppl_2.II-216
  12. 12. Li YY, Feng Y, McTiernan CF, et al. Downregulation of matrix metalloproteinases and reduction in collagen damage in the failing human heart after support with left ventricular assist devices. Circulation. 2001;104:1147-1152.10.1161/hc3501.09521511535571
  13. 13. Delgado R 3rd, Radovancevic B, Massin EK, Frazier OH, Benedict C. Neurohormonal changes after implantation of a left ventricular assist system. ASAIO J. 1998;44:299-302.10.1097/00002480-199807000-000119682956
  14. 14. Shah NR, Bieniarz MC, Basra SS, et al. Serum biomarkers in severe refractory cardiogenic shock. JACC Heart Fail. 2013;1:200-6. doi: 10.1016/j.jchf.2013.03.002.10.1016/j.jchf.2013.03.00224621870
  15. 15. Chiotoroiu A, Buicu F, Benedek T. Recent advances in biomarker discovery – from serum to imaging-based biomarkers for a complex assessment of heart failure patients. Journal of Interdisciplinary Medicine. 2016;1:125-130. doi: 10.1515/jim-2016-0045.10.1515/jim-2016-0045
  16. 16. Meredith AJ, Dai DLY, Chen V, et al. Circulating biomarker responses to medical management vs. mechanical circulatory support in severe inotrope-dependent acute heart failure. Esc Heart Failure. 2016;3:86-96. doi:10.1002/ehf2.12076.10.1002/ehf2.12076506315827774271
  17. 17. Duma RJ, Siegel AL. Serum creatinine phosphokinase in acute myocardial infarction: diagnostic value. Arch Intern Med. 1965;115:443-51.10.1001/archinte.1965.0386016006901114274140
  18. 18. Pierce GF, Jaffe AS. Increased creatine kinase MB in the absence of acute myocardial infarction. Clin Chem. 1986;32:2044-51.10.1093/clinchem/32.11.2044
  19. 19. Al-Hadi HA, Fox KA. Cardiac Markers in the Early Diagnosis and Management of Patients with Acute Coronary Syndrome. Sultan Qaboos University Medical Journal. 2009;9:231-246.
  20. 20. Saenger AK, Jaffe AS. The use of biomarkers for the evaluation and treatment of patients with acute coronary syndromes. Med Clin North Am. 2007;91:657-681. doi: 10.1016/j.mcna.2007.04.001.10.1016/j.mcna.2007.04.00117640541
  21. 21. Irvin RG, Cobb FR, Roe CR. Acute myocardial infarction and MB creatine phosphokinase. Relationship between onset of symptoms of infarction and appearance and disappearance of enzyme. Arch Intern Med. 1980;140:329-334. doi:10.1001/archinte.1980.00330150043014.10.1001/archinte.1980.00330150043014
  22. 22. Gibler WB, Young GP, Hedges JR et al. Acute myocardial infarction in chest pain patients with non-diagnostic ECGs: serial CK-MB sampling in the emergency department. The Emergency Medicine Cardiac Research Group. Ann Emerg Med. 1992;21:504-512.
  23. 23. Daubert MA, Jeremias A. The utility of troponin measurement to detect myocardial infarction: review of the current findings. Vasc Health Risk Manag. 2010;6:691-699.
  24. 24. del Val Martin D, Sanmartin Fernandez MS, Zamorano Gomez JL. Biomarkers in acute coronary syndrome. IJC Metabolic & Endocrine. 2015;8:20-23. https://doi.org/10.1016/j.ijcme.2015.04.00310.1016/j.ijcme.2015.04.003
  25. 25. Tucker JF, Collins RA, Anderson AJ, Hauser J, Kalas J, Apple FS. Early diagnostic efficiency of cardiac troponin I and Troponin T for acute myocardial infarction. Acad Emerg Med. 1997;4:13-21.10.1111/j.1553-2712.1997.tb03637.x9110006
  26. 26. Vaughan L. Biomarkers in acute medicine. Medicine. 2013;41:136-141. doi: http://dx.doi.org/10.1016/j.mpmed.2013.01.001.10.1016/j.mpmed.2013.01.001
  27. 27. Tanindi A, Cemri M. Troponin elevation in conditions other than acute coronary syndromes. Vasc Health Risk Manag. 2011;7:597-603. doi:10.2147/VHRM.S24509.10.2147/VHRM.S24509321242522102783
  28. 28. Gunnewiek JM, Van Der Hoeven JG. Cardiac troponin elevations among critically ill patients. Curr Opin Crit Care. 2004;10:342-346.10.1097/01.ccx.0000135514.20538.4415385749
  29. 29. Peacock WF 4th, De Marco T, Fonarow GC, et al. Cardiac Troponin and Outcome in Acute Heart Failure. N Engl J Med. 2008;358:2117-2126. doi: 10.1056/NEJMoa0706824.10.1056/NEJMoa070682418480204
  30. 30. Sato Y, Yamada T, Taniguchi T, et al. Persistently increased serum concentrations of cardiac troponin T in patients with idiopathic dilated cardiomyopathy are predictive of adverse outcomes. Circulation. 2001;103:369-74.10.1161/01.CIR.103.3.36911157687
  31. 31. Pascual-Figal DA, Manzano-Fernandez S, Boronat M, et al. Soluble ST2, high-sensitivity troponin T- and N-terminal pro-B-type natriuretic peptide: complementary role for risk stratification in acutely decompensated heart failure. Eur J Heart Fail. 2011;13:718-725. doi: 10.1093/eurjhf/hfr047.10.1093/eurjhf/hfr04721551163
  32. 32. Jolly SS, Shenkman H, Brieger D, et al. Quantitative troponin and death, cardiogenic shock, cardiac arrest and new heart failure in patients with non-ST-segment elevation acute coronary syndromes (NSTE ACS): insights from the Global Registry of Acute Coronary Events. Heart. 2011;97:197-202. doi: 10.1136/hrt.2010.195511.10.1136/hrt.2010.19551121076124
  33. 33. Iqbal MP, Kazmi KA, Mehboobali N, Rahbar A. Myoglobin – a marker of reperfusion and a prognostic indicator in patients with acute myocardial infarction. Clin Cardiol. 2004;27:144-50.10.1002/clc.4960270309665461615049381
  34. 34. Alhadi HA, Fox KA. Do we need additional markers of myocyte necrosis: the potential value of heart fatty-acid-binding protein. QJM. 2004;97:187-198.10.1093/qjmed/hch03715028848
  35. 35. Colli A, Josa M, Pomar JL, Mestres CA, Gherli T. Heart fatty acid binding protein in the diagnosis of myocardial infarction: where do we stand today? Cardiology. 2007;108:4-10. doi: 10.1159/000095594.10.1159/00009559416960442
  36. 36. Alansari SE, Croal BL. Diagnostic value of heart fatty acid binding protein and myoglobin in patients admitted with chest pain. Ann Clin Biochem. 2004;41:391-396. doi: 10.1258/0004563041731565.10.1258/000456304173156515333191
  37. 37. Ilva T, Lund J, Porela P, et al. Early markers of myocardial injury: cTnI is enough. Clin Chim Acta. 2009;400:82-85. doi: 10.1016/j.cca.2008.10.005.10.1016/j.cca.2008.10.00518992232
  38. 38. Manzano-Fernandez S, Januzzi JL, Pastor-Perez FJ, et al. Serial monitoring of soluble interleukin family member ST2 in patients with acutely decompensated heart failure. Cardiology. 2012;122:158-166. doi: 10.1159/000338800.10.1159/00033880022832599
  39. 39. Caselli C, D'Amico A, Ragusa R, et al. IL-33/ST2 pathway and classical cytokines in end-stage heart failure patients submitted to left ventricular assist device support: a paradoxic role for inflammatory mediators? Mediators Inflamm. 2013;2013:498703. doi: 10.1155/2013/498703.10.1155/2013/498703387244524385685
  40. 40. Meredith AJ, Dai DLY, Chen V, et al. Circulating biomarker responses to medical management vs. mechanical circulatory support in severe inotrope-dependent acute heart failure. Esc Heart Failure. 2016;3:86-96. doi:10.1002/ehf2.12076.10.1002/ehf2.12076506315827774271
  41. 41. Yasue H, Yoshimura M, Sumida H, et al. Localization and mechanism of secretion of B-type natriuretic peptide in comparison with those of A-type natriuretic peptide in normal subjects and patients with heart failure. Circulation. 1994;90:195-203.10.1161/01.CIR.90.1.1958025996
  42. 42. Richards AM, Nicholls MG, Espiner EA, et al. B-type natriuretic peptides and ejection fraction for prognosis after myocardial infarction. Circulation. 2003;107:2786-2792. doi: 10.1161/01.CIR.0000070953.76250.B9.10.1161/01.CIR.0000070953.76250.B912771003
  43. 43. de Lemos JA, Morrow DA, Bentley JH, et al. The prognostic value of B-type natriuretic peptide in patients with acute coronary syndromes. N Engl J Med. 2001;345:1014-1021. doi: 10.1056/NEJMoa011053.10.1056/NEJMoa01105311586953
  44. 44. Khan SQ, Dhillon OS, O’Brien RJ, et al. C-terminal provasopressin (copeptin) as a novel and prognostic marker in acute myocardial infarction: Leicester Acute Myocardial Infarction Peptide (LAMP) study. Circulation. 2007;115:2103-2110. doi: 10.1161/CIRCULATIONAHA.106.685503.10.1161/CIRCULATIONAHA.106.68550317420344
  45. 45. Reichlin T, HochholzerW, Stelzig C, et al. Incremental value of copeptin for rapid rule out of acute myocardial infarction. J Am Coll Cardiol. 2009;54:60-68. doi:10.1016/j.jacc.2009.01.076.10.1016/j.jacc.2009.01.07619555842
  46. 46. Shpektor A. Cardiogenic shock: the role of inflammation. Acute Card Care. 2010;12:115-118. doi: 10.3109/17482941.2010.523705.10.3109/17482941.2010.52370521039083
  47. 47. Kohsaka S, Menon V, Lowe AM, et al. Systemic inflammatory response syndrome after acute myocardial infarction complicated by cardiogenic shock. Arch Intern Med. 2005;165:1643-1650. doi: 10.1001/archinte.165.14.1643.10.1001/archinte.165.14.164316043684
  48. 48. Pudil R, Krejsek J, Pidrman V, Gregor J, Tichy M, Bures J. Inflammatory response to acute myocardial infarction complicated by cardiogenic shock. Acta Medica. 2001;44:149-151.
  49. 49. Geppert A, Dorninger A, Delle-Karth G, Zorn G, Heinz G, Huber K. Plasma concentrations of interlukin-6, organ failure, vasopressor support, and successful revascularization in predicting 30-day mortality of patients with cardiogenic shock complicating acute myocardial infarction. Crit Care Med. 2006;34:2035-2042. doi: 10.1097/01.CCM.0000228919.33620.D9.10.1097/01.CCM.0000228919.33620.D916775569
  50. 50. Theroux P, Armstrong PW, Mahaffey KW et al. Prognostic significance of blood markers of inflammation in patients with ST-elevation myocardial infarction undergoing primary angioplasty and effects of pexelizumab, a C5 inhibitor: A substudy of the COMMA trial. Eur Heart J. 2005:26;1964-1970. doi:10.1093/eurheartj/ehi292.10.1093/eurheartj/ehi29215872036
  51. 51. Mueller C, Buettner HJ, Hodgson JM, et al. Inflammation and long-term mortality after non-ST elevation acute coronary syndrome treated with a very early invasive strategy in 1042 consecutive patients. Circulation. 2002;105:1412-1415.10.1161/01.CIR.0000012625.02748.6211914246
  52. 52. Schiele F, Meneveau N, Seronde MF, et al. C-reactive proteinimproves risk prediction in patients with acute coronary syndromes. Eur Heart J. 2010;31:290-297. doi:10.1093/eurheartj/ehp273.10.1093/eurheartj/ehp27319578164
  53. 53. Meijers WC, van der Velde AR, de Boer RA. The ARCHITECT galectin-3 assay: comparison with other automated and manual assays for the measurement of circulating galectin-3 levels in heart failure. Expert Rev Mol Diagn. 2014;14:257-266. doi: 10.1586/14737159.2014.892421.10.1586/14737159.2014.89242124606321
  54. 54. Giannitsis E, Katus HA. Troponins and high-sensitivity troponins as markers of necrosis in CAD and heart failure. Herz. 2009;34:600-606. doi: 10.1007/s00059-009-3306-6.10.1007/s00059-009-3306-620024639
  55. 55. Daniels LB, Bayes-Genis A. Using ST2 in cardiovascular patients: a review. Future Cardiol. 2014;10:525-539. doi: 10.2217/fca.14.36.10.2217/fca.14.3625301315
  56. 56. De Berardinis B, Gaggin HK, Magrini L, et al. Comparison between admission natriuretic peptides, NGAL and sST2 testing for the prediction of worsening renal function in patients with acutely decompensated heart failure. Clin Chem Lab Med. 2014;53:613-621. http://dx.doi.org/10.1515/cclm-2014-0191.10.1515/cclm-2014-019125473804
  57. 57. Anand IS, Latini R, Florea VG, et al. C-Reactive Protein in Heart Failure Prognostic Value and the Effect of Valsartan. Circulation. 2005;112:1428-1434. doi: 10.1161/CIRCULATIONAHA.104.508465.10.1161/CIRCULATIONAHA.104.50846516129801
  58. 58. Ribeiro DRP, Ramos AM, Vieira PL, et al. High-Sensitivity C-Reactive Protein as a Predictor of Cardiovascular Events after ST-Elevation Myocardial Infarction. Arquivos Brasileiros de Cardiologia. 2014;103:69-75. doi:10.5935/abc.20140086.10.5935/abc.20140086412676325120085
  59. 59. Yip HK, Hang CL, Fang CY, et al. Level of high-sensitivity C-reactive protein is predictive of 30-day outcomes in patients with acute myocardial infarction undergoing primary coronary intervention. Chest. 2005;127:803-808. doi: 10.1378/chest.127.3.803.10.1378/chest.127.3.80315764760
  60. 60. Magdalen R, Hertz I, Merlon H, Weiner P, Mohammedi I, Robert D. The relation between preprocedural C-reactive protein levels and early and late complications in patients with acute myocardial infarction undergoing interventional coronary angioplasty. Clin Cardiol. 2004;27:163-168.10.1002/clc.4960270314665448215049386
  61. 61. Karpiński L, Płaksej R, Kosmala W, Witkowska M. Serum levels of interleukin-6, interleukin-10 and C-reactive protein in relation to left ventricular function in patients with myocardial infarction treated with primary angioplasty. Kardiol Pol. 2008;66:1279-1285.
  62. 62. Matsubara J, Sugiyama S, Nozaki T, et al. Incremental Prognostic Significance of the Elevated Levels of Pentraxin 3 in Patients With Heart Failure With Normal Left Ventricular Ejection Fraction. J Am Heart Assoc. 2014;3:1-11. doi:10.1161/JAHA.114.000928.10.1161/JAHA.114.000928431037825012287
  63. 63. Guo R, Li Y, Wen J, Li W, Xu Y. Elevated plasma level of pentraxin-3 predicts in-hospital and 30-day clinical outcomes in patients with non-ST-segment elevation myocardial infarction who have undergone percutaneous coronary intervention. Cardiology. 2014;129:178-188. doi: 10.1159/000364996.10.1159/00036499625323314
  64. 64. Latini R, Maggioni AP, Peri G, et al. Prognostic significance of the long pentraxin PTX3 in acute myocardial infarction. Circulation. 2004;110:2349-2354. doi: 10.1161/01.CIR.0000145167.30987.2E.10.1161/01.CIR.0000145167.30987.2E15477419
  65. 65. Mallick A, Lanuzzi JL. Biomarkers in acute heart failure. Rev Esp Cardiol. 2015;68:514-525. doi: 10.1016/j.rec.2015.02.009.10.1016/j.rec.2015.02.00925911167
  66. 66. Bayes-Genis A, Ordonez-Llanos J. Multiple biomarker strategies for risk stratification in heart failure. Clin Chim Acta. 2015;443:120-125. doi: 10.1016/j.cca.2014.10.023.10.1016/j.cca.2014.10.02325451945
  67. 67. De Antonio M, Lupon J, Galan A, Vila J, Urrutia A, Bayes-Genis A. Combined use of high-sensitivity cardiac troponin T and N-terminal pro-B type natriuretic peptide improves measurements of performance over established mortality risk factors in chronic heart failure. Am Heart J. 2012;163:821-828. doi: 10.1016/j.ahj.2012.03.004.10.1016/j.ahj.2012.03.00422607860
  68. 68. Maisel AS, Mueller C, Fitzgerald R, et al. Prognostic utility of plasma neutrophil gelatinase-associated lipocalin in patients with acute heart failure: the NGAL EvaLuation Along with B-type NaTriuretic Peptide in acutely decompensated heart failure (GALLANT) trial. Eur J Heart Fail. 2011;13:846-851. doi: 10.1093/eurjhf/hfr087.10.1093/eurjhf/hfr087314383221791540
  69. 69. Holmes JW, Borg TK, Covell JW. Structure and mechanics of healing myocardial infarcts. Annu Rev Biomed Eng. 2005;7:223-253. doi:10.1146/annurev.bioeng.7.060804.100453.10.1146/annurev.bioeng.7.060804.10045316004571
  70. 70. van Kimmenade RR, Januzzi JL Jr, Ellinor PT, et al. Utility of amino-terminal pro-brain natriuretic peptide, galectin-3, and apelin for the evaluation of patients with acute heart failure. J Am Coll Cardiol. 2006;48:1217-1224. doi: 10.1016/j.jacc.2006.03.061.10.1016/j.jacc.2006.03.06116979009
  71. 71. Bayes-Genis A, Ordonez-Llanos J. Multiple biomarker strategies for risk stratification in heart failure. Clin Chim Acta. 2015;443:120-125. doi: 10.1016/j.cca.2014.10.023.10.1016/j.cca.2014.10.023
  72. 72. Ky B, French B, Levy WC, et al. Multiple biomarkers for risk prediction in chronic heart failure. Circ Heart Fail. 2012;5:183-190. doi: 10.1161/CIRCHEARTFAILURE.111.965020.10.1161/CIRCHEARTFAILURE.111.965020338748722361079
  73. 73. Daniels LB, Bayes-Genis A. Using ST2 in cardiovascular patients: a review. Future Cardiol. 2014;10:525-539. doi: 10.2217/fca.14.36.10.2217/fca.14.3625301315
  74. 74. de Boer RA, Lok DJ, Jaarsma T, et al. Predictive value of plasma galectin-3 levels in heart failure with reduced and preserved ejection fraction. Ann Med 2011;43:60-68. doi: 10.3109/07853890.2010.538080.10.3109/07853890.2010.538080302857321189092
  75. 75. Singh RB, Dandekar SP, Elimban V, Gupta SK, Dhalla NS. Role of proteases in the pathophysiology of cardiac disease. Mol Cell Biochem. 2004;263:241-256.10.1023/B:MCBI.0000041865.63445.40
  76. 76. Ali MA, Schulz R. Activation of MMP-2 as a key event in oxidative stress injury to the heart. Front Biosci (Landmark Ed). 2009;14:699-716.
  77. 77. Ahmed SH, Clark LL, Pennington WR, et al. Matrix metalloproteinases/tissue inhibitors of metalloproteinases: relationship between changes in proteolytic determinants of matrix, composition and structural, functional and clinical manifestations of hypertensive heart disease. Circulation 2006;113:2089-2096. doi: 10.1161/CIRCULATIONAHA.105.573865.10.1161/CIRCULATIONAHA.105.573865
  78. 78. Krum H, Elsik M, Schneider HG, et al. Relation of peripheral collagen markers to death and hospitalization in patients with heart failure and preserved ejection fraction: results of the I-PRESERVE collagen substudy. Circ Heart Fail. 2011:4:561-568. doi:10.1161/CIRCHEARTFAILURE.110.960716.10.1161/CIRCHEARTFAILURE.110.960716
  79. 79. Rao PK, Toyama Y, Chiang HR et al. Loss of cardiac microRNAmediated regulation leads to dilated cardiomyopathy and heart failure. Circ Res. 2009;105:585-594. doi:10.1161/CIRCULATIONAHA.105.573865.10.1161/CIRCULATIONAHA.105.573865
  80. 80. Wang Y, Pan X, Fan Y, et al. Dysregulated expression of microRNAs and mRNAs in myocardial infarction. Am J Transl Res. 2015;7:2291-2304.
  81. 81. Stanton LW, Garrard LJ, Damm D, et al. Altered patterns of gene expression in response to myocardial infarction. Circ Res. 2000;86:939-945.10.1161/01.RES.86.9.939
  82. 82. Kiliszek M, Burzynska B, Michalak M, et al. Altered gene expression pattern in peripheral blood mononuclear cells in patients with acute myocardial infarction. PLoS One. 2012;7:e50054. doi: 10.1371/journal.pone.0050054.10.1371/journal.pone.0050054
  83. 83. Drew BJ, Califf RM, Funk M, et al. Practice Standards for Electrocardiographic Monitoring in Hospital Settings: An American Heart Association Scientific Statement From the Councils on Cardiovascular Nursing, Clinical Cardiology, and Cardiovascular Disease in the Young: Endorsed by the International Society of Computerized Electrocardiology and the American Association of Critical Care Nurses. Circulation. 2004;110:2721-2746. doi: 10.1161/01.CIR.0000145144.56673.59.10.1161/01.CIR.0000145144.56673.59
  84. 84. Stevenson RN, Marchant BG, Ranjadayalan K, Uthayakumar S, Timmis AD. Holter ST monitoring early after acute myocardial infarction: mechanisms of ischaemia in patients treated by thrombolysis. Br Heart J. 1993;70:433-437.10.1136/hrt.70.5.433
  85. 85. Johanson P, Jernberg T, Gunnarsson G, Lindahl B, Wallentin L, Dellborg M. Prognostic value of ST segment resolution when and what to measure. Eur Heart J. 2003;24:337-345. doi: https://doi.org/10.1016/S0195-668X(02)00739-X.10.1016/S0195-668X(02)00739-X
  86. 86. Flanders SA. ST Segment Monitoring: Putting Standards Into Practice. AACN Adv Crit Care. 2007;18:275-284.10.1097/01.AACN.0000284428.63460.52
  87. 87. Leung JM, Voskanian A, Bellows AM. Automated electrocardiograph ST segment trending monitors: accuracy in detecting myocardial ischemia. Anesth Analg. 1998;87:4-10.
  88. 88. Shanewise J. How to Reliably Detect Ischemia in the Intensive Care Unit and Operating Room. Semin Cardiothorac Vasc Anesth. 2006;10:101-109. doi: 10.1177/108925320601000117.10.1177/10892532060100011716703242
  89. 89. Opincariu D, Chitu M, Rat N, Benedek I. Integrated ST segment elevation scores and in-hospital mortality in STEMI patients undergoing primary PCI. Journal of Cardiovascular Emergencies. 2016;2:114-121. doi: 10.1515/jce-2016-0018.10.1515/jce-2016-0018
  90. 90. Ikossi DG, Knudson MM, Morabito DJ, et al. Continuous muscle tissue oxygenation in critically injured patients: a prospective observational study. J Trauma. 2006;61:780-790. doi: 10.1097/01.ta.0000239500.71419.58.10.1097/01.ta.0000239500.71419.5817033541
  91. 91. Nicks BA, Campos KM, Bozeman WP. Association of low noninvasive near-infrared spectroscopic measurements during initial trauma resuscitation with future development of multiple organ dysfunction. World J Emerg Med. 2015;6:105-110. doi: 10.5847/wjem.j.1920-8642.2015.02.004.10.5847/wjem.j.1920-8642.2015.02.004445846926056540
  92. 92. Miner J, Nelson R, Hayden L. The effect of near infrared spectroscopy monitoring on the treatment of patients presenting to the emergency department in shock. Crit Care Med. 2010;38:S861.
  93. 93. Lima A, van Bommel J, Jansen TC, Ince C, Bakker J. Low tissue oxygen saturation at the end of early goal-directed therapy is associated with worse outcome in critically ill patients. Crit Care. 2009;13(Suppl5):S13. doi: 10.1186/cc8011.10.1186/cc8011278611519951385
  94. 94. Mariscalo G, Musumeci F. Fluid management in the cardiothoracic intensive care unit: diuresis – diuretics and hemofiltration. Curr Opin Anaesthesiol. 2014;27:133-139. doi: 10.1097/ACO.0000000000000055.10.1097/ACO.000000000000005524514030
  95. 95. Jakovljevic DG, Moore S, Hallsworth K, Fattakhova G, Thoma C, Trenell MI. Comparison of cardiac output determined by bioimpedance and bioreactance methods at rest and during exercise. J Clin Monit Comput. 2012;26:63-68. doi: 10.1007/s10877-012-9334-4.10.1007/s10877-012-9334-422234400
  96. 96. Laupland KB, Shahpori R, Kirkpatrick AW, et al. Occurrence and outcome of fever in critically ill adults. Crit Care Med. 2008;36:1531. doi: 10.1097/CCM.0b013e318170efd3.10.1097/CCM.0b013e318170efd318434882
  97. 97. Ryan M, Levy MM. Clinical review: fever in intensive care unit patients. Crit Care. 2003;7:221-225.10.1186/cc187927066712793871
  98. 98. Niven DJ, Léger C, Stelfox HT, Laupland KB. Fever in the critically ill: a review of epidemiology, immunology, and management. J Intensive Care Med. 2012;27:290-297. doi: 10.1177/0885066611402463.10.1177/088506661140246321441283
  99. 99. Niven DJ, Gaudet JE, Laupland KB, Mrklas KJ, Roberts DJ, Stelfox HT. Accuracy of Peripheral Thermometers for Estimating Temperature: A Systematic Review and Metaanalysis. Ann Intern Med. 2015;163:768-777. doi: 10.7326/M15-1150.10.7326/M15-115026571241
  100. 100. Jefferies S, Weatherall M, Young P, Beasley R. A systematic review of the accuracy of peripheral thermometry in estimating core temperatures among febrile critically ill patients. Crit Care Resusc. 2011;13:194-199.10.1016/S1441-2772(23)01636-8
  101. 101. Young PJ, Saxena M, Beasley R, et al. Early peak temperature and mortality in critically ill patients with or without infection. Intensive Care Med. 2012. doi: 10.1007/s00134-012-2478-3.10.1007/s00134-012-2478-322290072
  102. 102. Jeremy S. Bock and Stephen S. Gottlieb. Cardiorenal Syndrome. Circulation. 2010;121:2592-2600. https://doi.org/10.1161/CIRCULATIONAHA.109.886473.10.1161/CIRCULATIONAHA.109.88647320547939
  103. 103. Md Ralib A, Pickering JW, Shaw GM, Endre ZH. The urine output definition of acute kidney injury is too liberal. Critical Care. 2013;17:R112. doi:10.1186/cc12784.10.1186/cc12784405634923787055
  104. 104. Prowle JR, Liu YL, Licari E, et al. Oliguria as predictive biomarker of acute kidney injury in critically ill patients. Crit Care. 2011;17:R172. doi: 10.1186/cc10318.10.1186/cc10318338761421771324
  105. 105. Macedo E, Malhotra R, Bouchard J, Wynn SK, Mehta RL. Oliguria is an early predictor of higher mortality in critically ill patients. Kidney Int. 2011;80:760-767. doi: 10.1038/ki.2011.150.10.1038/ki.2011.15021716258
  106. 106. Uchino S, Kellum JA, Bellomo R, et al. Beginning and Ending Supportive Therapy for the Kidney (BEST Kidney) Investigators. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005;294:813-818. doi: 10.1001/jama.294.7.813.10.1001/jama.294.7.81316106006
  107. 107. Antonelli M, Levy M, Andrews PJ, et al. Hemodynamic monitoring in shock and implications for management. International Consensus Conference, Paris, France, 27-28 April 2006. Intensive Care Med. 2007;33:575-590. doi: 10.1007/s00134-007-0531-4.10.1007/s00134-007-0531-417285286
  108. 108. McCullough PA, Adam A, Becker CR, et al. Epidemiology and prognostic implications of contrast-induced nephropathy. Am J Cardiol. 2006;98:5K-13K.10.1016/j.amjcard.2006.01.01916949375
  109. 109. Mohammed NMA, Mahfouz A, Achkar K, Rafie IM, Hajar R. Contrast-induced Nephropathy. Heart Views. 2013;14:106-116. doi:10.4103/1995-705X.125926.10.4103/1995-705X.125926396962624696755
  110. 110. Truijen J, van Lieshout JJ, Wesselink WA, Westerhof BE. Noninvasive continuous hemodynamic monitoring. J Clin Monit Comput. 2012;26:267-278. doi:10.1007/s10877-012-9375-8.10.1007/s10877-012-9375-8339135922695821
  111. 111. Ameloot K, Palmers PJ, Malbrain ML. The accuracy of noninvasive cardiac output and pressure measurements with finger cuff: a concise review. Curr Opin Crit Care. 2015;21:232-239. doi: 10.1097/MCC.0000000000000198.10.1097/MCC.000000000000019825922896
  112. 112. Martina JR, Westerhof BE, van Goudoever J, et al. Noninvasive continuous arterial blood pressure monitoring with Nexfin®. Anesthesiology. 2012;116:1092-1103. doi: 10.1097/ALN.0b013e31824f94ed.10.1097/ALN.0b013e31824f94ed22415387
  113. 113. Kim SH, Lilot M, Sidhu KS, et al. Accuracy and precision of continuous noninvasive arterial pressure monitoring compared with invasive arterial pressure: a systematic review and meta-analysis. Anesthesiology. 2014;120:1080-1097. doi: 10.1097/ALN.0000000000000226.10.1097/ALN.000000000000022624637618
  114. 114. Keren H, Burkhoff D, Squara P. Evaluation of a noninvasive continuous cardiac output monitoring system based on thoracic bioreactance. Am J Physiol Heart Circ Physiol. 2007;293:H583-H589. doi: 10.1152/ajpheart.00195.2007.10.1152/ajpheart.00195.200717384132
  115. 115. van Lieshout JJ, Toska K, van Lieshout EJ, Eriksen M, Walløe L, Wesseling KH. Beat-to-beat noninvasive stroke volume from arterial pressure and Doppler ultrasound. Eur J Appl Physiol. 2003;90:131-137.10.1007/s00421-003-0901-812851826
  116. 116. Engore M, Barbee D. Comparison of Cardiac Output Determined by Bioimpedance, Thermodilution, and the Fick Method. Am J Crit Care. 2005;14:40-45.10.4037/ajcc2005.14.1.40
  117. 117. Ball TR, Culp BC, Patel V, et al. Comparation of the endotracheal cardiac output monitor to thermodilution in cardiac surgery patients. J Cardiothorac Vasc. 2010;24:762-766. doi: 10.1053/j.jvca.2010.04.008.10.1053/j.jvca.2010.04.00820674392
  118. 118. Babbs CF. Noninvasive measurement of cardiac stroke volume using pulse wave velocity and aortic dimensions: a simulation study. BioMedical Engineering OnLine. 2014;13:137. doi:10.1186/1475-925X-13-137.10.1186/1475-925X-13-137427135725238910
  119. 119. Sakka SG, Kozieras J, Thuemer O, van Hout N. Measurement of cardiac output: a comparison between transpulmonary thermodilution and uncalibrated pulse contour analysis. Br J Anaesth. 2007;99:337-342.10.1093/bja/aem17717611251
  120. 120. Oren-Grinberg A. The PiCCO Monitor. Int Anesthesiol Clin. 2010;48:57-85. doi: 10.1097/AIA.0b013e3181c3dc11.10.1097/AIA.0b013e3181c3dc1120065727
  121. 121. Young BP, Low LL. Noninvasive monitoring cardiac output using partial CO(2) rebreathing. Crit Care Clin. 2010;26:383-392. doi: 10.1016/j.ccc.2009.12.002.10.1016/j.ccc.2009.12.00220381727
  122. 122. Cholley BP, Vieillard-Baron A, Mebazaa A. Echocardiography in the ICU: time for widespread use! Intensive Care Med. 2006;32:9-10. doi: 10.1007/s00134-005-2833-8.10.1007/s00134-005-2833-816292627
  123. 123. Wilansky S. Echocardiography in the Assessment of Complications of Myocardial Infarction. Tex Heart Inst J. 1991;18:237-242.
  124. 124. Esmaeilzadeh M, Parsaee M, Maleki M. The Role of Echocardiography in Coronary Artery Disease and Acute Myocardial Infarction. J Tehran Heart Cent. 2013;8:1-13.
  125. 125. Bródka J, Tułecki Ł, Ciurysek M, Gburek T. Thermodilution vs transesophageal echocardiography for cardiac output measurement in patients with good left ventricle function. Anestezjol Intens Ter. 2010;42:15-18.
  126. 126. Perrino AC Jr, Harris SN, Luther MA. Intraoperative determination of cardiac output using multiplane transesophageal echocardiography: a comparison to thermodilution. Anesthesiology. 1998;89:350-357.10.1097/00000542-199808000-000109710392
  127. 127. Mehta Y, Arora D. Newer methods of cardiac output monitoring. World J Cardiol. 2014;6:1022-1029. doi:10.4330/wjc.v6.i9.102210.4330/wjc.v6.i9.1022417679325276302
  128. 128. Laupland KB, Bands CJ. Utility of esophageal Doppler as a minimally invasive hemodynamic monitor: a review. Can J Anaesth. 2002;49:393-401. doi: 10.1007/BF03017329.10.1007/BF0301732911927480
  129. 129. Sharma J, Bhise M, Singh A, Mehta Y, Trehan N. Hemodynamic measurements after cardiac surgery: transesophageal Doppler versus pulmonary artery catheter. J Cardiothorac Vasc Anesth. 2005;19:746-750.10.1053/j.jvca.2004.11.03816326299
  130. 130. Camporata L, Beale R. Pitfalls in haemodynamic monitoring based on the arterial pressure waveform. Crit Care. 2010;14:124. doi: 10.1186/cc8845.10.1186/cc8845288710020236463
  131. 131. Thom O, Taylor DM, Wolfe RE. Comparation of a suprasternal cardiac output monitor (USCOM) with the pulmonary artery catheter. Br J Anaesth. 2009;103:800-804. doi: 10.1093/bja/aep296.10.1093/bja/aep29619864307
  132. 132. Pulmonary Artery Consensus Conference: consensus statement. Crit Care Med. 1997;25:910-925.10.1097/00003246-199706000-000069201042
  133. 133. Bishop MH. Invasive monitoring in trauma and other critical illness. Current Opinion in Critical Care 1995;3:206.10.1097/00075198-199506000-00009
  134. 134. Magder S. Invasive hemodynamic monitoring. Crit Care Clin. 2015;31:67-87. doi: 10.1016/j.ccc.2014.08.004.10.1016/j.ccc.2014.08.00425435479
  135. 135. De Backer D. Is there a role for invasive hemodynamic monitoring in acute heart failure management? Curr Heart Fail Rep. 2015;12:197-204. doi: 10.1007/s11897-015-0256-6.10.1007/s11897-015-0256-625721355
  136. 136. Runciman WB, Ilsley AH, Roberts JG. An evaluation of thermodilution cardiac output measurement using the Swan-Ganz catheter. Anaesth Intensive Care. 1981;9:208-220.10.1177/0310057X81009003027025698
  137. 137. Ameloot K, Meex I, Genbrugge C, et al. Accuracy of continuous thermodilution cardiac output monitoring by pulmonary artery catheter during therapeutic hypothermia in postcardiac arrest patients. Resuscitation. 2014;85:1263-1268. doi: 10.1016/j.resuscitation.2014.06.025.10.1016/j.resuscitation.2014.06.02525008135
  138. 138. Mebazaa A, Gheoghiade M, Piña IL, et al. Practical recommendations for prehospital and early in hospital management of patients presenting with acute heart failure SNVSndromes. Crit Care Med. 2008;36(1 Suppl):S129-S139. doi: 10.1097/01.CCM.0000296274.51933.4C.10.1097/01.CCM.0000296274.51933.4C18158472
  139. 139. Filipescu D, Tomescu D, Droc G, et al. Recomandări pentru monitorizarea hemodinamică în soc. In: Sandesc D, Bedreag O (eds), Recomandări si protocoale în anestezie, terapie intensivă și medicină de urgentă. Timișoara: Ed Mirton, 2009; p. 541-570.
  140. 140. Weed HG. Pulmonary “capillary” wedge pressure not the pressure in the pulmonary capillaries. Chest. 1991;100:1138-1140.10.1378/chest.100.4.11381914574
  141. 141. Ryan JJ, Rich JD, Thiruvoipati T, Swamy R, Kim GH, Rich S. Current practice for determining pulmonary capillary wedge pressure predisposes to serious errors in the classification of patients with pulmonary hypertension. Am Heart J. 2012;163:589-594. doi: 10.1016/j.ahj.2012.01.024.10.1016/j.ahj.2012.01.02422520524
  142. 142. Cecconi M, Rhodes A, Della Rocca G. From arterial pressures to cardiac output. JL Vincent (ed), 2008 Yearbook of intensive care and emergency medicine. Berlin: Springer Verlag, 2008; p. 591-600.10.1007/978-3-540-77290-3_55
DOI: https://doi.org/10.1515/jce-2017-0013 | Journal eISSN: 2457-5518 | Journal ISSN: 2457-550X
Language: English
Page range: 61 - 71
Submitted on: Apr 27, 2017
Accepted on: May 21, 2017
Published on: Jul 11, 2017
Published by: Asociatia Transilvana de Terapie Transvasculara si Transplant KARDIOMED
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Andreea Barcan, Zsuzsanna Suciu, Emese Rapolti, published by Asociatia Transilvana de Terapie Transvasculara si Transplant KARDIOMED
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.