4. Hochman JS, Sleeper LA, Webb JG, et al. Early revascularization in acute myocardial infarction complicated by cardiogenic shock. SHOCK Investigators. Should we emergently revascularize occluded coronaries for cardiogenic shock. N Engl J Med. 1999;341:625-34. doi: 10.1056/NEJM199908263410901.10.1056/NEJM19990826341090110460813
6. Goldberg RJ, Spencer FA, Gore JM, Lessard D, Yarzebski J. Thirty Year Trends (1975-2005) in the Magnitude, Management, and Hospital Death Rates Associated With Cardiogenic Shock in Patients with Acute Myocardial Infarction: A Population-Based Perspective. Circulation. 2009;119:1211-1219. doi:10.1161/CIRCULATIONAHA.108.814947.10.1161/CIRCULATIONAHA.108.814947273083219237658
7. Babaev A, Frederick PD, Pasta DJ, et al. Trends in management and outcomes of patients with acute myocardial infarction complicated by cardiogenic shock. JAMA. 2005; 294:448-454. doi: 10.1001/jama.294.4.448.10.1001/jama.294.4.44816046651
8. TRIUMPH Investigators, Alexander JH, Reynolds HR, et al. Effect of tilarginine acetate in patients with acute myocardial infarction and cardiogenic shock: the TRIUMPH randomized controlled trial. JAMA. 2007;297:1657-1666. doi: 10.1001/jama.297.15.joc70035.10.1001/jama.297.15.joc7003517387132
11. Bartling B, Milting H, Schumann H, et al. Myocardial gene expression of regulators of myocyte apoptosis and myocyte calcium homeostasis during hemodynamic unloading by ventricular assist devices in patients with end-stage heart failure. Circulation. 1999;100:216-223. https://doi.org/10.1161/01.CIR.100.suppl_2.II-216.10.1161/01.CIR.100.suppl_2.II-216
12. Li YY, Feng Y, McTiernan CF, et al. Downregulation of matrix metalloproteinases and reduction in collagen damage in the failing human heart after support with left ventricular assist devices. Circulation. 2001;104:1147-1152.10.1161/hc3501.09521511535571
13. Delgado R 3rd, Radovancevic B, Massin EK, Frazier OH, Benedict C. Neurohormonal changes after implantation of a left ventricular assist system. ASAIO J. 1998;44:299-302.10.1097/00002480-199807000-000119682956
15. Chiotoroiu A, Buicu F, Benedek T. Recent advances in biomarker discovery – from serum to imaging-based biomarkers for a complex assessment of heart failure patients. Journal of Interdisciplinary Medicine. 2016;1:125-130. doi: 10.1515/jim-2016-0045.10.1515/jim-2016-0045
16. Meredith AJ, Dai DLY, Chen V, et al. Circulating biomarker responses to medical management vs. mechanical circulatory support in severe inotrope-dependent acute heart failure. Esc Heart Failure. 2016;3:86-96. doi:10.1002/ehf2.12076.10.1002/ehf2.12076506315827774271
19. Al-Hadi HA, Fox KA. Cardiac Markers in the Early Diagnosis and Management of Patients with Acute Coronary Syndrome. Sultan Qaboos University Medical Journal. 2009;9:231-246.
21. Irvin RG, Cobb FR, Roe CR. Acute myocardial infarction and MB creatine phosphokinase. Relationship between onset of symptoms of infarction and appearance and disappearance of enzyme. Arch Intern Med. 1980;140:329-334. doi:10.1001/archinte.1980.00330150043014.10.1001/archinte.1980.00330150043014
22. Gibler WB, Young GP, Hedges JR et al. Acute myocardial infarction in chest pain patients with non-diagnostic ECGs: serial CK-MB sampling in the emergency department. The Emergency Medicine Cardiac Research Group. Ann Emerg Med. 1992;21:504-512.
23. Daubert MA, Jeremias A. The utility of troponin measurement to detect myocardial infarction: review of the current findings. Vasc Health Risk Manag. 2010;6:691-699.
25. Tucker JF, Collins RA, Anderson AJ, Hauser J, Kalas J, Apple FS. Early diagnostic efficiency of cardiac troponin I and Troponin T for acute myocardial infarction. Acad Emerg Med. 1997;4:13-21.10.1111/j.1553-2712.1997.tb03637.x9110006
30. Sato Y, Yamada T, Taniguchi T, et al. Persistently increased serum concentrations of cardiac troponin T in patients with idiopathic dilated cardiomyopathy are predictive of adverse outcomes. Circulation. 2001;103:369-74.10.1161/01.CIR.103.3.36911157687
32. Jolly SS, Shenkman H, Brieger D, et al. Quantitative troponin and death, cardiogenic shock, cardiac arrest and new heart failure in patients with non-ST-segment elevation acute coronary syndromes (NSTE ACS): insights from the Global Registry of Acute Coronary Events. Heart. 2011;97:197-202. doi: 10.1136/hrt.2010.195511.10.1136/hrt.2010.19551121076124
33. Iqbal MP, Kazmi KA, Mehboobali N, Rahbar A. Myoglobin – a marker of reperfusion and a prognostic indicator in patients with acute myocardial infarction. Clin Cardiol. 2004;27:144-50.10.1002/clc.4960270309665461615049381
34. Alhadi HA, Fox KA. Do we need additional markers of myocyte necrosis: the potential value of heart fatty-acid-binding protein. QJM. 2004;97:187-198.10.1093/qjmed/hch03715028848
35. Colli A, Josa M, Pomar JL, Mestres CA, Gherli T. Heart fatty acid binding protein in the diagnosis of myocardial infarction: where do we stand today? Cardiology. 2007;108:4-10. doi: 10.1159/000095594.10.1159/00009559416960442
36. Alansari SE, Croal BL. Diagnostic value of heart fatty acid binding protein and myoglobin in patients admitted with chest pain. Ann Clin Biochem. 2004;41:391-396. doi: 10.1258/0004563041731565.10.1258/000456304173156515333191
38. Manzano-Fernandez S, Januzzi JL, Pastor-Perez FJ, et al. Serial monitoring of soluble interleukin family member ST2 in patients with acutely decompensated heart failure. Cardiology. 2012;122:158-166. doi: 10.1159/000338800.10.1159/00033880022832599
39. Caselli C, D'Amico A, Ragusa R, et al. IL-33/ST2 pathway and classical cytokines in end-stage heart failure patients submitted to left ventricular assist device support: a paradoxic role for inflammatory mediators? Mediators Inflamm. 2013;2013:498703. doi: 10.1155/2013/498703.10.1155/2013/498703387244524385685
40. Meredith AJ, Dai DLY, Chen V, et al. Circulating biomarker responses to medical management vs. mechanical circulatory support in severe inotrope-dependent acute heart failure. Esc Heart Failure. 2016;3:86-96. doi:10.1002/ehf2.12076.10.1002/ehf2.12076506315827774271
41. Yasue H, Yoshimura M, Sumida H, et al. Localization and mechanism of secretion of B-type natriuretic peptide in comparison with those of A-type natriuretic peptide in normal subjects and patients with heart failure. Circulation. 1994;90:195-203.10.1161/01.CIR.90.1.1958025996
43. de Lemos JA, Morrow DA, Bentley JH, et al. The prognostic value of B-type natriuretic peptide in patients with acute coronary syndromes. N Engl J Med. 2001;345:1014-1021. doi: 10.1056/NEJMoa011053.10.1056/NEJMoa01105311586953
49. Geppert A, Dorninger A, Delle-Karth G, Zorn G, Heinz G, Huber K. Plasma concentrations of interlukin-6, organ failure, vasopressor support, and successful revascularization in predicting 30-day mortality of patients with cardiogenic shock complicating acute myocardial infarction. Crit Care Med. 2006;34:2035-2042. doi: 10.1097/01.CCM.0000228919.33620.D9.10.1097/01.CCM.0000228919.33620.D916775569
50. Theroux P, Armstrong PW, Mahaffey KW et al. Prognostic significance of blood markers of inflammation in patients with ST-elevation myocardial infarction undergoing primary angioplasty and effects of pexelizumab, a C5 inhibitor: A substudy of the COMMA trial. Eur Heart J. 2005:26;1964-1970. doi:10.1093/eurheartj/ehi292.10.1093/eurheartj/ehi29215872036
51. Mueller C, Buettner HJ, Hodgson JM, et al. Inflammation and long-term mortality after non-ST elevation acute coronary syndrome treated with a very early invasive strategy in 1042 consecutive patients. Circulation. 2002;105:1412-1415.10.1161/01.CIR.0000012625.02748.6211914246
53. Meijers WC, van der Velde AR, de Boer RA. The ARCHITECT galectin-3 assay: comparison with other automated and manual assays for the measurement of circulating galectin-3 levels in heart failure. Expert Rev Mol Diagn. 2014;14:257-266. doi: 10.1586/14737159.2014.892421.10.1586/14737159.2014.89242124606321
56. De Berardinis B, Gaggin HK, Magrini L, et al. Comparison between admission natriuretic peptides, NGAL and sST2 testing for the prediction of worsening renal function in patients with acutely decompensated heart failure. Clin Chem Lab Med. 2014;53:613-621. http://dx.doi.org/10.1515/cclm-2014-0191.10.1515/cclm-2014-019125473804
58. Ribeiro DRP, Ramos AM, Vieira PL, et al. High-Sensitivity C-Reactive Protein as a Predictor of Cardiovascular Events after ST-Elevation Myocardial Infarction. Arquivos Brasileiros de Cardiologia. 2014;103:69-75. doi:10.5935/abc.20140086.10.5935/abc.20140086412676325120085
59. Yip HK, Hang CL, Fang CY, et al. Level of high-sensitivity C-reactive protein is predictive of 30-day outcomes in patients with acute myocardial infarction undergoing primary coronary intervention. Chest. 2005;127:803-808. doi: 10.1378/chest.127.3.803.10.1378/chest.127.3.80315764760
60. Magdalen R, Hertz I, Merlon H, Weiner P, Mohammedi I, Robert D. The relation between preprocedural C-reactive protein levels and early and late complications in patients with acute myocardial infarction undergoing interventional coronary angioplasty. Clin Cardiol. 2004;27:163-168.10.1002/clc.4960270314665448215049386
61. Karpiński L, Płaksej R, Kosmala W, Witkowska M. Serum levels of interleukin-6, interleukin-10 and C-reactive protein in relation to left ventricular function in patients with myocardial infarction treated with primary angioplasty. Kardiol Pol. 2008;66:1279-1285.
62. Matsubara J, Sugiyama S, Nozaki T, et al. Incremental Prognostic Significance of the Elevated Levels of Pentraxin 3 in Patients With Heart Failure With Normal Left Ventricular Ejection Fraction. J Am Heart Assoc. 2014;3:1-11. doi:10.1161/JAHA.114.000928.10.1161/JAHA.114.000928431037825012287
63. Guo R, Li Y, Wen J, Li W, Xu Y. Elevated plasma level of pentraxin-3 predicts in-hospital and 30-day clinical outcomes in patients with non-ST-segment elevation myocardial infarction who have undergone percutaneous coronary intervention. Cardiology. 2014;129:178-188. doi: 10.1159/000364996.10.1159/00036499625323314
67. De Antonio M, Lupon J, Galan A, Vila J, Urrutia A, Bayes-Genis A. Combined use of high-sensitivity cardiac troponin T and N-terminal pro-B type natriuretic peptide improves measurements of performance over established mortality risk factors in chronic heart failure. Am Heart J. 2012;163:821-828. doi: 10.1016/j.ahj.2012.03.004.10.1016/j.ahj.2012.03.00422607860
70. van Kimmenade RR, Januzzi JL Jr, Ellinor PT, et al. Utility of amino-terminal pro-brain natriuretic peptide, galectin-3, and apelin for the evaluation of patients with acute heart failure. J Am Coll Cardiol. 2006;48:1217-1224. doi: 10.1016/j.jacc.2006.03.061.10.1016/j.jacc.2006.03.06116979009
75. Singh RB, Dandekar SP, Elimban V, Gupta SK, Dhalla NS. Role of proteases in the pathophysiology of cardiac disease. Mol Cell Biochem. 2004;263:241-256.10.1023/B:MCBI.0000041865.63445.40
77. Ahmed SH, Clark LL, Pennington WR, et al. Matrix metalloproteinases/tissue inhibitors of metalloproteinases: relationship between changes in proteolytic determinants of matrix, composition and structural, functional and clinical manifestations of hypertensive heart disease. Circulation 2006;113:2089-2096. doi: 10.1161/CIRCULATIONAHA.105.573865.10.1161/CIRCULATIONAHA.105.573865
78. Krum H, Elsik M, Schneider HG, et al. Relation of peripheral collagen markers to death and hospitalization in patients with heart failure and preserved ejection fraction: results of the I-PRESERVE collagen substudy. Circ Heart Fail. 2011:4:561-568. doi:10.1161/CIRCHEARTFAILURE.110.960716.10.1161/CIRCHEARTFAILURE.110.960716
82. Kiliszek M, Burzynska B, Michalak M, et al. Altered gene expression pattern in peripheral blood mononuclear cells in patients with acute myocardial infarction. PLoS One. 2012;7:e50054. doi: 10.1371/journal.pone.0050054.10.1371/journal.pone.0050054
83. Drew BJ, Califf RM, Funk M, et al. Practice Standards for Electrocardiographic Monitoring in Hospital Settings: An American Heart Association Scientific Statement From the Councils on Cardiovascular Nursing, Clinical Cardiology, and Cardiovascular Disease in the Young: Endorsed by the International Society of Computerized Electrocardiology and the American Association of Critical Care Nurses. Circulation. 2004;110:2721-2746. doi: 10.1161/01.CIR.0000145144.56673.59.10.1161/01.CIR.0000145144.56673.59
84. Stevenson RN, Marchant BG, Ranjadayalan K, Uthayakumar S, Timmis AD. Holter ST monitoring early after acute myocardial infarction: mechanisms of ischaemia in patients treated by thrombolysis. Br Heart J. 1993;70:433-437.10.1136/hrt.70.5.433
89. Opincariu D, Chitu M, Rat N, Benedek I. Integrated ST segment elevation scores and in-hospital mortality in STEMI patients undergoing primary PCI. Journal of Cardiovascular Emergencies. 2016;2:114-121. doi: 10.1515/jce-2016-0018.10.1515/jce-2016-0018
92. Miner J, Nelson R, Hayden L. The effect of near infrared spectroscopy monitoring on the treatment of patients presenting to the emergency department in shock. Crit Care Med. 2010;38:S861.
93. Lima A, van Bommel J, Jansen TC, Ince C, Bakker J. Low tissue oxygen saturation at the end of early goal-directed therapy is associated with worse outcome in critically ill patients. Crit Care. 2009;13(Suppl5):S13. doi: 10.1186/cc8011.10.1186/cc8011278611519951385
95. Jakovljevic DG, Moore S, Hallsworth K, Fattakhova G, Thoma C, Trenell MI. Comparison of cardiac output determined by bioimpedance and bioreactance methods at rest and during exercise. J Clin Monit Comput. 2012;26:63-68. doi: 10.1007/s10877-012-9334-4.10.1007/s10877-012-9334-422234400
98. Niven DJ, Léger C, Stelfox HT, Laupland KB. Fever in the critically ill: a review of epidemiology, immunology, and management. J Intensive Care Med. 2012;27:290-297. doi: 10.1177/0885066611402463.10.1177/088506661140246321441283
99. Niven DJ, Gaudet JE, Laupland KB, Mrklas KJ, Roberts DJ, Stelfox HT. Accuracy of Peripheral Thermometers for Estimating Temperature: A Systematic Review and Metaanalysis. Ann Intern Med. 2015;163:768-777. doi: 10.7326/M15-1150.10.7326/M15-115026571241
100. Jefferies S, Weatherall M, Young P, Beasley R. A systematic review of the accuracy of peripheral thermometry in estimating core temperatures among febrile critically ill patients. Crit Care Resusc. 2011;13:194-199.10.1016/S1441-2772(23)01636-8
103. Md Ralib A, Pickering JW, Shaw GM, Endre ZH. The urine output definition of acute kidney injury is too liberal. Critical Care. 2013;17:R112. doi:10.1186/cc12784.10.1186/cc12784405634923787055
104. Prowle JR, Liu YL, Licari E, et al. Oliguria as predictive biomarker of acute kidney injury in critically ill patients. Crit Care. 2011;17:R172. doi: 10.1186/cc10318.10.1186/cc10318338761421771324
105. Macedo E, Malhotra R, Bouchard J, Wynn SK, Mehta RL. Oliguria is an early predictor of higher mortality in critically ill patients. Kidney Int. 2011;80:760-767. doi: 10.1038/ki.2011.150.10.1038/ki.2011.15021716258
107. Antonelli M, Levy M, Andrews PJ, et al. Hemodynamic monitoring in shock and implications for management. International Consensus Conference, Paris, France, 27-28 April 2006. Intensive Care Med. 2007;33:575-590. doi: 10.1007/s00134-007-0531-4.10.1007/s00134-007-0531-417285286
108. McCullough PA, Adam A, Becker CR, et al. Epidemiology and prognostic implications of contrast-induced nephropathy. Am J Cardiol. 2006;98:5K-13K.10.1016/j.amjcard.2006.01.01916949375
113. Kim SH, Lilot M, Sidhu KS, et al. Accuracy and precision of continuous noninvasive arterial pressure monitoring compared with invasive arterial pressure: a systematic review and meta-analysis. Anesthesiology. 2014;120:1080-1097. doi: 10.1097/ALN.0000000000000226.10.1097/ALN.000000000000022624637618
114. Keren H, Burkhoff D, Squara P. Evaluation of a noninvasive continuous cardiac output monitoring system based on thoracic bioreactance. Am J Physiol Heart Circ Physiol. 2007;293:H583-H589. doi: 10.1152/ajpheart.00195.2007.10.1152/ajpheart.00195.200717384132
116. Engore M, Barbee D. Comparison of Cardiac Output Determined by Bioimpedance, Thermodilution, and the Fick Method. Am J Crit Care. 2005;14:40-45.10.4037/ajcc2005.14.1.40
117. Ball TR, Culp BC, Patel V, et al. Comparation of the endotracheal cardiac output monitor to thermodilution in cardiac surgery patients. J Cardiothorac Vasc. 2010;24:762-766. doi: 10.1053/j.jvca.2010.04.008.10.1053/j.jvca.2010.04.00820674392
119. Sakka SG, Kozieras J, Thuemer O, van Hout N. Measurement of cardiac output: a comparison between transpulmonary thermodilution and uncalibrated pulse contour analysis. Br J Anaesth. 2007;99:337-342.10.1093/bja/aem17717611251
124. Esmaeilzadeh M, Parsaee M, Maleki M. The Role of Echocardiography in Coronary Artery Disease and Acute Myocardial Infarction. J Tehran Heart Cent. 2013;8:1-13.
125. Bródka J, Tułecki Ł, Ciurysek M, Gburek T. Thermodilution vs transesophageal echocardiography for cardiac output measurement in patients with good left ventricle function. Anestezjol Intens Ter. 2010;42:15-18.
126. Perrino AC Jr, Harris SN, Luther MA. Intraoperative determination of cardiac output using multiplane transesophageal echocardiography: a comparison to thermodilution. Anesthesiology. 1998;89:350-357.10.1097/00000542-199808000-000109710392
128. Laupland KB, Bands CJ. Utility of esophageal Doppler as a minimally invasive hemodynamic monitor: a review. Can J Anaesth. 2002;49:393-401. doi: 10.1007/BF03017329.10.1007/BF0301732911927480
129. Sharma J, Bhise M, Singh A, Mehta Y, Trehan N. Hemodynamic measurements after cardiac surgery: transesophageal Doppler versus pulmonary artery catheter. J Cardiothorac Vasc Anesth. 2005;19:746-750.10.1053/j.jvca.2004.11.03816326299
130. Camporata L, Beale R. Pitfalls in haemodynamic monitoring based on the arterial pressure waveform. Crit Care. 2010;14:124. doi: 10.1186/cc8845.10.1186/cc8845288710020236463
131. Thom O, Taylor DM, Wolfe RE. Comparation of a suprasternal cardiac output monitor (USCOM) with the pulmonary artery catheter. Br J Anaesth. 2009;103:800-804. doi: 10.1093/bja/aep296.10.1093/bja/aep29619864307
136. Runciman WB, Ilsley AH, Roberts JG. An evaluation of thermodilution cardiac output measurement using the Swan-Ganz catheter. Anaesth Intensive Care. 1981;9:208-220.10.1177/0310057X81009003027025698
139. Filipescu D, Tomescu D, Droc G, et al. Recomandări pentru monitorizarea hemodinamică în soc. In: Sandesc D, Bedreag O (eds), Recomandări si protocoale în anestezie, terapie intensivă și medicină de urgentă. Timișoara: Ed Mirton, 2009; p. 541-570.
140. Weed HG. Pulmonary “capillary” wedge pressure not the pressure in the pulmonary capillaries. Chest. 1991;100:1138-1140.10.1378/chest.100.4.11381914574
141. Ryan JJ, Rich JD, Thiruvoipati T, Swamy R, Kim GH, Rich S. Current practice for determining pulmonary capillary wedge pressure predisposes to serious errors in the classification of patients with pulmonary hypertension. Am Heart J. 2012;163:589-594. doi: 10.1016/j.ahj.2012.01.024.10.1016/j.ahj.2012.01.02422520524
142. Cecconi M, Rhodes A, Della Rocca G. From arterial pressures to cardiac output. JL Vincent (ed), 2008 Yearbook of intensive care and emergency medicine. Berlin: Springer Verlag, 2008; p. 591-600.10.1007/978-3-540-77290-3_55