Have a personal or library account? Click to login
The Relevance of Coding Gene Polymorphysms of Cytokines and Cellular Receptors in Sepsis Cover

The Relevance of Coding Gene Polymorphysms of Cytokines and Cellular Receptors in Sepsis

Open Access
|Feb 2017

References

  1. 1. Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001;29:1303–10.10.1097/00003246-200107000-0000211445675
  2. 2. Mariansdatter SE, Eiset AH, Søgaard KK, Christiansen CF. Differences in reported sepsis incidence according to study design: a literature review. BMC Med Res Methodol. 2016;16:137. doi: 10.1186/s12874-016-0237-9.10.1186/s12874-016-0237-9506283327733132
  3. 3. Dombrovskiy VY, Martin AA, Sunderram J, Paz HL. Rapid increase in hospitalization and mortality rates for severe sepsis in the United States: a trend analysis from 1993 to 2003. Crit Care Med. 2007;35:1244–50.10.1097/01.CCM.0000261890.41311.E917414736
  4. 4. Zhang L, Zhu G, Han L, Fu P. Early goal-directed therapy in the management of severe sepsis or septic shock in adults: a meta-analysis of randomized controlled trials. BMC Med Res Methodol. 2015;13:71. doi: 10.1186/s12916-015-0312-9.10.1186/s12916-015-0312-9439361025885654
  5. 5. Martin GS. Sepsis, severe sepsis and septic shock: changes in incidence, pathogens and outcomes. Expert Rev Anti Infect Ther. 2012;10:701–6.10.1586/eri.12.50348842322734959
  6. 6. Donadello K, Scolletta S, Covajes C, et al. suPAR as a prognostic biomarker in sepsis. BMC Med. 2012;10:2. doi: 10.1186/1741-7015-10-2.10.1186/1741-7015-10-2327554522221662
  7. 7. Sankar V, Webster NR. Clinical application of sepsis biomarkers. J Anesth. 2013;27:269-83.10.1007/s00540-012-1502-723108494
  8. 8. Szederjesi J, Almasy E, Lazar A, et al. An evaluation of serum procalcitonin and C-reactive protein levels as diagnostic and prognostic biomarkers of severe sepsis. J Crit Care Med. 2015;1:147-53.10.1515/jccm-2015-0022595329529967823
  9. 9. Liu X, Ren H, Peng D. Sepsis biomarkers: an omics perspective. Front Med. 2014;8:58-67.10.1007/s11684-014-0318-2708892124481820
  10. 10. Stanilova SA. Functional relevance of IL-10 promoter polymorphisms for sepsis development. Crit Care. 2010;14:119. doi: 10.1186/cc8839.10.1186/cc8839287551020236506
  11. 11. Deasy A, Read RC. Genetic variation in pro-inflammatory cytokines and meningococcal sepsis. Curr Opin Infect Dis. 2010;23:255–8.10.1097/QCO.0b013e32833939de
  12. 12. Wong HR. Genetics and genomics in pediatric septic shock. Crit Care Med. 2012;40:1618–26.10.1097/CCM.0b013e318246b546332964222511139
  13. 13. Namath A, Patterson AJ. Genetic polymorphisms in sepsis. Crit Care Clin. 2009;25:835–56.10.1016/j.ccc.2009.06.00419892256
  14. 14. Jabandziev P, Smerek M, Michalek J, et al. Multiple gene-to-gene interactions in children with sepsis: a combination of five gene variants predicts outcome of life-threatening sepsis. Critical Care. 2014;18:R1. doi: 10.1186/cc13174.10.1186/cc13174405644124383711
  15. 15. Chauhan M, McGuire W. Interleukin-6 (-174C) polymorphism and the risk of sepsis in very low birth weight infants: meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2008;93: F427-29. doi: 10.1136/adc.2007.134205.10.1136/adc.2007.13420518375611
  16. 16. Teuffel O, Ethier MC, Beyene J, Sung L. Association between tumor necrosis factor-alpha promoter -308 A/G polymorphism and susceptibility to sepsis and sepsis mortality: a systematic review and meta-analysis. Crit Care Med. 2010;38:276-82.10.1097/CCM.0b013e3181b42af019789454
  17. 17. Tiancha H, Huiqin W, Jiyong J, et al. Association between lymphotoxin-alpha intron +252 polymorphism and sepsis: a meta-analysis. Scand J Infect Dis. 2011;43:436-47.10.3109/00365548.2011.56252821366408
  18. 18. Angus DC, Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001;29:1303–10.10.1097/00003246-200107000-0000211445675
  19. 19. Surbatovic M, Veljovic M, Jevdjic J, Popovic N, Djordjevic D, Radakovic S. Immunoinflammatory Response in Critically Ill Patients: Severe Sepsis and/or Trauma. Mediators Inflamm. 2013;2013:362793. doi: 10.1155/2013/362793.10.1155/2013/362793385915924371374
  20. 20. Kothari N, Bogra J, Abbas H, et al. Tumor Necrosis Factor gene polymorphism results in high TNF level in sepsis and septic shock. Cytokine. 2013;61:676–81.10.1016/j.cyto.2012.11.01623317877
  21. 21. Jeremic V, Tamara Alempijevic T, Srdan Mijatovic S, et al. Clinical relevance of IL-6 gene polymorphism in severely injured patients. Bosn J Basic Med Sci. 2014;14:110-7.10.17305/bjbms.2014.2274433395224856384
  22. 22. Allam G, Alsulaimani AA, Alzaharani AK, Nasr A. Neonatal infections in Saudi Arabia: Association with cytokine gene Polymorphisms. Centr Eur J Immunol. 2015;40:68-77.10.5114/ceji.2015.50836447254226155186
  23. 23. Baghel K, Srivastava RN, Chandra A, et al. TNF-α, IL-6, and IL-8 Cytokines and Their Association with TNF-α-308 G/A Polymorphism and Postoperative Sepsis. J Gastrointest Surg. 2014;18:1486–94.10.1007/s11605-014-2574-524944154
  24. 24. Feng B, Mao ZR, Pang K, Zhang SI, Li L. Association of tumor necrosis factor α −308G/A and interleukin-6 −174G/C gene polymorphism with pneumonia-induced sepsis. J Crit Care. 2015;30:920-2.10.1016/j.jcrc.2015.04.12326025100
  25. 25. Gao JW, Zhang AQ, Pan W, Yue CI, Zeng L, Gu W, Jiang J. Association between IL-6-174G/C Polymorphism and the Risk of Sepsis and Mortality: A Systematic Review and Meta Analysis. PloS One. 2015;10:e0118843. doi: 10.1371/journal.pone.0118843.10.1371/journal.pone.0118843434848025734339
  26. 26. Faix JD. Biomarkers of sepsis. Crit Rev Clin Lab Sci. 2013;50:23-36.10.3109/10408363.2013.764490361396223480440
  27. 27. Uusitalo-Seppala R, Koskinen P, Leino A, et al. Early detection of severe sepsis in the emergency room: diagnostic value of plasma C-reactive protein, procalcitonin, and interleukin-6. Scand J Infect Dis. 2011;43:883–90.10.3109/00365548.2011.60032521892899
  28. 28. Miguel-Bayarri V, Casanoves-Laparra EB, Pallas-Beneyto L, Sancho-Chinesta S, Martin-Osorio LF, et al. Prognostic value of the biomarkers procalcitonin, interleukin-6 and C-reactive protein in severe sepsis. Med Intensiva. 2012;36:556–62.10.1016/j.medin.2012.01.01422495097
  29. 29. Tschaikowsky K, Hedwig-Geissing M, Braun GG, Radespiel-Troeger M. Predictive value of procalcitonin, interleukin-6, and C reactive protein for survival in postoperative patients with severe sepsis. J Crit Care. 2011;26:54–64.10.1016/j.jcrc.2010.04.01120646905
  30. 30. Palmiere C, Augsburger M. Markers for sepsis diagnosis in the forensic setting: state of the art. Croat Med J. 2014;55:103–14.10.3325/cmj.2014.55.103400971124778096
  31. 31. Fishman D, Faulds G, Jeffery R et al. The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. J Clin Invest. 1998;1:1369-76.10.1172/JCI26295089849769329
  32. 32. Kilpinen S, Hulkkonen J, Wang XY, Hurme M. The promoter polymorphism of the interleukin-6 gene regulates interleukin-6 production in neonates but not in adults. Eur Cytokine Netw. 2001;12:62-8.
  33. 33. Georgescu AM, Banescu C, Badea I, et al. IL-6 gene polymorphisms and sepsis in ICU adult Romanian patients: a prospective study. Rev Romana Med Lab. 2017; 25. doi: 10.1515/rrlm-2016-0044.10.1515/rrlm-2016-0044
  34. 34. Baier RJ, Loggins J, Yanamandra K. IL-10, IL-6 and CD14 polymorphisms and sepsis outcome in ventilated very low birth weight infants. BMC Med. 2006;4:10. doi:10.1186/1741-7015-4-10.10.1186/1741-7015-4-10151339016611358
  35. 35. Ahrens P, Kattner E, Kohler B, et al. Mutations of genes involved in the innate immune system as predictors of sepsis in very low birth weight infants. Pediatr Res. 2004;55:652-6.10.1203/01.PDR.0000112100.61253.8514739370
  36. 36. Martin-Loeches I, Sole-Violan J, Rodriguez de Castro F, Isabel Garcia-Laorden M, Borderias L, et al. Variants at the promoter of the interleukin-6 gene are associated with severity and outcome of pneumococcal community-acquired pneumonia. Intensive Care Med. 2012;38:256–62.10.1007/s00134-011-2406-y22113815
  37. 37. Sole-Violan J, Rodriguez de Castro F, Isabel Garcia-Laorden M, Blanquer J, Aspa J, et al. Genetic variability in the severity and outcome of community-acquired pneumonia. Respir Med. 2010;104:440–7.10.1016/j.rmed.2009.10.00919900796
  38. 38. Davis SM, Clark EAS, Nelson LT, Silver RM. The association of innate immune response gene polymorphisms and puerperal group A streptococcal sepsis. Am J Obstet Gynecol. 2010;202:308.e301–308.e308.10.1016/j.ajog.2010.01.00620207250
  39. 39. Carregaro F, Carta A, Cordeiro JA, Lobo SM, Tajara EH, et al. Polymorphisms IL10–819 and TLR-2 are potentially associated with sepsis in brazilian patients. Mem Inst Oswaldo Cruz. 2010;105:649–56.10.1590/S0074-02762010000500008
  40. 40. Shalhub S, Junker CE, Imahara SD, Mindrinos MN, Dissanaike S, et al. Variation in the TLR4 gene influences the risk of organ failure and shock posttrauma: a cohort study. J Trauma. 2009;66:115–22.10.1097/TA.0b013e3181938d50274063219131814
  41. 41. Cesur S, Sengui A, Kurtoglu Y, et al. Prognostic value of cytokines (TNF-α, IL-10, Leptin) and C-reactive protein serum levels in adult patients with nosocomial sepsis. J Microb Infect Dis. 2011;1:101-9.10.5799/ahinjs.02.2011.03.0024
  42. 42. Zeng L, Gu W, Chen K, et al. Clinical relevance of the interleukin 10 promoter polymorphisms in Chinese Han patients with major trauma: genetic association studies. Crit Care. 2009,13:R188. doi:10.1186/cc8182.10.1186/cc8182281191719939284
  43. 43. Surbatovic M, Grujic K, Cikota B, et al. Polymorphisms of genes encoding tumor necrosis factor-alpha, interleukin-10, cluster of differentiation-14 and interleukin-1ra in critically ill patients. J Crit Care. 2010;25,542.e1–542.e8.
  44. 44. Stanilova SA, Miteva LD, Karakolev ZT, Stefanov CS. Interleukin-10-1082 promoter polymorphism in association with cytokine production and sepsis susceptibility. Intensive Care Med. 2006;32:260–6.10.1007/s00134-005-0022-416435103
  45. 45. Ouyang L, Lv YD, Hou C, Wu GB, He ZH. Quantitative analysis of the association between interleukin-10 1082A/G polymorphism and susceptibility to sepsis. Mol Biol Rep. 2013;40:4327–32.10.1007/s11033-013-2520-823716201
  46. 46. Pan W, Zhang AQ, Yue CL, et al. Association between interleukin-10 polymorphisms and sepsis: a meta-analysis. Epidemiol Infect. 2015;143:366–75.10.1017/S095026881400070325497741
  47. 47. Cardoso CP, de Oliveira AJ, Botoni FA, et al. Interleukin-10 rs2227307 and CXCR2 rs1126579 polymorphisms modulate the predisposition to septic shock. Mem Inst Oswaldo Cruz. 2015;110:453-60.10.1590/0074-02760150003450140726038959
  48. 48. Accardo Palumbo A, Forte GI, Pileri D, et al. Analysis of IL-6, IL-10 and IL-17 genetic polymorphisms as risk factors for sepsis development in burned patients. Burns. 2012;38:208-13.10.1016/j.burns.2011.07.02222079540
  49. 49. Kofoed K, Andersen O, Kronborg G, et al. Use of plasma C-reactive protein, procalcitonin, neutrophils, macrophage migration inhibitory factor, soluble urokinase-type plasminogen activator receptor, and soluble triggering receptor expressed on myeloid cells-1 in combination to diagnose infections: a prospective study. Crit Care. 2007;11:R38.10.1186/cc5723220645617362525
  50. 50. Lorenz E, Mira JP, Frees KL, Schwartz DA. Relevance of mutations in the TLR4 receptor in patients with gram-negative septic shock. Arch Intern Med. 2002;162:1028–32.10.1001/archinte.162.9.102811996613
  51. 51. Wang H, Wei Y, Zeng Y, et al. The association of polymorphisms of TLR4 and CD14 genes with susceptibility to sepsis in a Chinese population. BMC Med Genet. 2014;15:123.10.1186/s12881-014-0123-4441169625394369
  52. 52. Schlüter B, Raufhake C, Erren M, et al. Effect of the interleukin-6 promoter polymorphism (-174 G/C) on the incidence and outcome of sepsis. Crit Care Med. 2002;30:32-7.10.1097/00003246-200201000-0000511902285
  53. 53. Oku R, Oda S, Nakada TA, et al. Differential pattern of cell-surface and soluble TREM 1 between sepsis and SIRS. Cytokine. 2013;61:112–7.10.1016/j.cyto.2012.09.00323046618
  54. 54. Su L, Han B, Liu C, et al. Value of soluble TREM-1, procalcitonin, and C-reactive protein serum levels as biomarkers for detecting bacteremia among sepsis patients with new fever in intensive care units: a prospective cohort study. BMC Infect Dis. 2012;12:157. doi: 10.1186/1471-2334-12-157.10.1186/1471-2334-12-157342647522809118
  55. 55. Su L, Liu C, Li C, et al. Dynamic Changes in Serum Soluble Triggering Receptor Expressed on Myeloid Cells-1 (sTREM-1) and its Gene Polymorphisms are Associated with Sepsis Prognosis. Inflammation. 2012;35:1833-43.10.1007/s10753-012-9504-z22798017
  56. 56. Peng LS, Li J, Zhou GS, Deng LH, Yao HG. Relationships between genetic polymorphisms of triggering receptor expressed on myeloid cells-1 and septic shock in a Chinese Han population. World J Emerg Med. 2015;6:123-30.10.5847/wjem.j.1920-8642.2015.02.007445847226056543
  57. 57. Chen QX, Zhou HD, Wu SJ, et al. Lack of association between TREM-1 gene polymorphisms and severe sepsis in a Chinese Han population. Hum Immunol. 2008;69:220–26.10.1016/j.humimm.2008.01.01318396215
  58. 58. Lemari J, Barraud D, Gibot S. Host response biomarkers in sepsis: overview on sTREM-1 detection. Methods Mol Biol. 2015;1237:225-39.10.1007/978-1-4939-1776-1_1725319790
  59. 59. Dimopoulou I, Pelekanou A, Mavrou I, et al. Early serum levels of soluble triggering receptor expressed on myeloid cells–1 in septic patients: Correlation with monocyte gene expression. J Crit Care. 2012;27:294–300.10.1016/j.jcrc.2011.06.01321855288
  60. 60. Masson S, Caironi P, Spanuth E, et al. Presepsin (soluble CD14 subtype) and procalcitonin levels for mortality prediction in sepsis: data from the Albumin Italian Outcome Sepsis trial. Crit Care. 2014, 18:R6. doi: 10.1186/cc13183.10.1186/cc13183405604624393424
  61. 61. Endo S, Suzuki Y, Takahashi G, et al. Usefulness of presepsin in the diagnosis of sepsis in a multicenter prospective study. J Infect Chemother. 2012;18:891-7.10.1007/s10156-012-0435-222692596
  62. 62. Yaegashi Y, Shirakawa K, Sato N, et al. Evaluation of a newly identified soluble CD14 subtype as a marker for sepsis. J Infect Chemother. 2005;11:234-8.10.1007/s10156-005-0400-416258819
  63. 63. Okamura Y, Yokoi H. Development of a point-of-care assay system for measurement of presepsin (sCD14-ST). Clin Chim Acta. 2011;412:2157–61.10.1016/j.cca.2011.07.02421839732
  64. 64. Zhang AQ, Yue CI, Gu W, Du J, Wang HY, Jiang J. Association between CD14 Promoter -159C/T Polymorphism and the Risk of Sepsis and Mortality: A Systematic Review and Meta-Analysis. PLoS One. 2013;8:e71237. doi: 10.1371/journal.pone.0071237.10.1371/journal.pone.0071237374717123990939
  65. 65. Lorente L, Martin MM, Borreguero-Leon JM, et al. The 4G/4G Genotype of PAI-1 Polymorphism Is Associated with Higher Plasma PAI-1 Concentrations and Mortality in Patients with Severe Sepsis. PLoS One. 2015;10:e0129565. doi: 10.1371/journal.pone.0129565.10.1371/journal.pone.0129565446625226066833
  66. 66. Madách K, Aladzsity I, Szilágyi A, et al. 4G/5G polymorphism of PAI-1 gene is associated with multiple organ dysfunction and septic shock in pneumonia induced severe sepsis: prospective, observational, genetic study. Crit Care. 2010;14:R79. doi: 10.1186/cc8992.10.1186/cc8992288720220429897
  67. 67. Perés Wingeyer SD, Cunto ER, Nogueras CM, San Juan JA, Gomez N, de Larrañaga GF. Biomarkers in sepsis at time zero: intensive care unit scores, plasma measurements and polymorphisms in Argentina. J Infect Dev Ctries. 2012;6:555–62.10.3855/jidc.210822842942
  68. 68. Andersen O, Eugen-Olsen J, Kafoed K, et al. Soluble urokinase plasminogen activator receptor is a marker of dysmetabolism in HIV-infected patients receiving highly active antiretroviral therapy. J Med Virol.2008;80:209-16.10.1002/jmv.2111418098145
  69. 69. Eugen-Olsen J, Andersen O, Linneberg A, et al. Circulating soluble urokinase plasminogen activator receptor predicts cancer, cardiovascular disease, diabetes and mortality in the general population. J Intern Med. 2010;268:296-308.10.1111/j.1365-2796.2010.02252.x20561148
  70. 70. Backes Y, van der Sluijs Koenraad F, Mackie DP, et al. Usefulness of suPAR as a biological marker in patients with systemic inflammation or infection: a systematic review. Intensive Care Med. 2012;38:1418-28.10.1007/s00134-012-2613-1342356822706919
  71. 71. Park YJ, Liu G, Tsuruta Y, et al. Participation of the urokinase receptor in neutrophil efferocytosis. Blood. 2009;114:860-70.10.1182/blood-2008-12-193524271602319398720
  72. 72. Wiersinga WJ, Kager LM, Hovius JW, et al. Urokinase receptor is necessary for bacterial defense against pneumonia-derived septic melioidosis by facilitating phagocytosis. J Immunol. 2010;184:3079-86.10.4049/jimmunol.090100820142364
  73. 73. Koch A, Voigt S, Kruschinski C, et al. Circulating soluble urokinase plasminogen activator receptor is stably elevated during the first week of treatment in the intensive care unit and predicts mortality in critically ill patients. Crit Care. 2011;15:R63. doi: 10.1186/cc10037.10.1186/cc10037322199621324198
  74. 74. Georgescu AM, Szederjesi J, Dobreanu M, et al. Soluble urokinase-type plasminogen activator receptor (suPAR) – a possible biomarker for bacteremia in sepsis. Rev Romana Med Lab. 2015;23:59-73.
  75. 75. Donadello K, Scolletta S, Covajes C, Vincent JL. suPAR as a prognostic biomarker in sepsis. BMC Med. 2012;10:2. doi: 10.1186/1741-7015-10-2.10.1186/1741-7015-10-2327554522221662
  76. 76. De Kruif MD, Lemaire LC, Giebelen IA, et al. The influence of corticosteroids on the release of novel biomarkers in human endotoxemia. Intensive Care Med. 2008;34:518-22.10.1007/s00134-007-0955-x224469918080111
  77. 77. Huttunen R, Syrjanen J, Vuento R, et al. Plasma level of soluble urokinase-type plasminogen activator receptor as a predictor of disease severity and case fatality in patients with bacteraemia: a prospective cohort study. J Intern Med. 2011;270:32-40.10.1111/j.1365-2796.2011.02363.x21332843
  78. 78. Koch A, Tacke F. Why high suPAR is not super-diagnostic, prognostic and potential pathogenic properties of a novel biomarker in the ICU. Crit Care. 2011;15:1020. doi: 10.1186/cc10577.10.1186/cc10577338868822182777
  79. 79. Molkanen T, Ruotsalainen E, Thorball CW, et al. Elevated soluble urokinase plasminogen activator receptor (suPAR) predicts mortality in Staphilococcus aureus bacteraemia. Eur J Clin Microbiol Infect Dis. 2011;30:1417-24.10.1007/s10096-011-1236-821479972
  80. 80. Kafoed K, Eugen-Olsen J, Petersen J, et al. Predicting mortality in patients with systemic inflammatory response syndrome: an evaluation of two prognostic models, two soluble receptors, and a macrophage migration inhibitory factor. Eur J Clin Microbiol Infect Dis. 2008;27:375-83.10.1007/s10096-007-0447-518197443
  81. 81. Walley KR, Russell JA. Protein C –1641 AA is associated with decreased survival and more organ dysfunction in severe sepsis. Crit Care Med. 2007;35:12-7.10.1097/01.CCM.0000249823.44726.4E17080006
  82. 82. Skibstead S, Bhasin MK, Aird WC, Shapiro NI. Bench-to-bedside review: Future novel diagnostics for sepsis – a systems biology approach. Critical Care. 2013;17:231. doi: 10.1186/cc12693.10.1186/cc12693405746724093155
DOI: https://doi.org/10.1515/jccm-2017-0001 | Journal eISSN: 2393-1817 | Journal ISSN: 2393-1809
Language: English
Page range: 5 - 11
Submitted on: Dec 1, 2016
|
Accepted on: Jan 20, 2017
|
Published on: Feb 18, 2017
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Anca Meda Georgescu, Bianca Liana Grigorescu, Ioana Raluca Chirteș, Alexander A. Vitin, Raluca Ștefania Fodor, published by University of Medicine, Pharmacy, Science and Technology of Targu Mures
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.