Have a personal or library account? Click to login

The Effects of Starvation of Honey Bee Larvae on Reproductive Quality and Wing Asymmetry of Honey Bee Drones

Open Access
|Dec 2017

References

  1. Alaux, C., Ducloz, F., Crauser, D., & le Conte, Y. (2010). Diet effects on honeybee immunocompetence. Biology Letters, 6, 562-565. http://doi.org/10.1098/rsbl.2009.098610.1098/rsbl.2009.0986293619620089536
  2. Babendreier, D., Kalberer, N., Romeis, J., Fluri, P., Bigler, F. (2004) Pollen consumption in honey bee larvae: a step forward in the risk assessment of transgenic plants. Apidologie 35, 293-300, http://doi.org/10.1051/apido:200401610.1051/apido:2004016
  3. Berg, S. (1991). Investigation on rates of large and small drones at a drone congregation area. Apidologie, 22, 437-438.
  4. Berg, S., Koeniger, N., Koeniger, G., & Fuchs, S. (1997). Body size and reproductive success of drones (Apis mellifera L). Apidologie, 28, 449-460. https://doi.org/10.1051/apido:1997061110.1051/apido:19970611
  5. Boes, K. E. (2010). Honeybee colony drone production and maintenance in accordance with environmental factors: an interplay of queen and worker decisions. Insectes Sociaux, 57, 1-9. https://doi.org/10.1007/s00040-009-0046-910.1007/s00040-009-0046-9
  6. Brodschneider, R., & Crailsheim, K. (2010). Nutrition and health in honey bees. Apidologie, 41, 278-294. https://doi.org/10.1051/apido/201001210.1051/apido/2010012
  7. Brückner, D. (1976). The influence of genetic variability on wing symmetry in honeybees (Apis mellifera). Evolution, 30, 100-108. https://doi.org/10.1111/j.1558-5646.1976.tb00886.x10.1111/j.1558-5646.1976.tb00886.x28565039
  8. Clarke, G. M., Brand, G. W., & Whitten, M. J. (1986). Fluctuating asymmetry: A technique for measuring developmental stress caused by inbreeding. Australian Journal of Biological Sciences, 39, 145-153. https://doi.org/10.1071/BI986014510.1071/BI9860145
  9. Cobey, S. W., Tarpy, D. R., & Woyke, J. (2013). Standard methods for instrumental insemination of Apis mellifera queens. Journal of Apicultural Research, 52, 1-18. http://dx.doi.org/10.3896/IBRA.1.52.4.0910.3896/IBRA.1.52.4.09
  10. Corby-Harris, V., Jones, B. M., Walton, A., Schwan, R. M., Anderson, K. E. (2014). Transcriptional markers of sub-optimal nutrition in developing Apis mellifera nurse workers. BMC Genomics,15, 134. https://doi.org/10.1186/1471-2164-15-134.10.1186/1471-2164-15-134393319524529032
  11. Couvillon, M. J., Hughes, W. O. H., Perez-Sat, J. A., Martin, S. J., Roy, G. G. F., Ratnieks, F. L. W. (2010). Sexual selection in honey bee: colony variation and the importance of size in male mating success. Behavioral Ecology, 21, 520-525. https://doi.org/10.1093/beheco/arq01610.1093/beheco/arq016
  12. Crailsheim, K., & Hrassnigg, N. (1998). Adaptation of hypopharyngeal gland development to the brood status of honeybee (Apis mellifera L.) colonies. Journal of Insect Physiology, 44, 929-939. https://doi.org/10.1016/S0022-1910(98)00058-410.1016/S0022-1910(98)00058-4
  13. Czekońska, K., Chuda-Mickiewicz, B., & Samborski, J. (2015). Quality of honeybee drones reared in colonies with limited and unlimited access to pollen. Apidologie, 46, 1-9. https://doi.org/10.1007/s13592-014-0296-z10.1007/s13592-014-0296-z
  14. Czekońska K., & Chuda-Mickiewicz B., (2015). The ability of honey bee drones to ejaculate. Journal of Apicultural Science, 59(2), 127-133. https://doi.org/10.1515/jas-2015-002710.1515/jas-2015-0027
  15. Dryden, I. L., & Mardia, K. V. (1998). Statistical Shape Analysis. Chichester: John Wiley and Sons.
  16. Es’kov, E. K., & Es’kova, M. D. (2013). Factors influencing wing size and body weight variation in the Western honey bee. Russian Journal of Ecology, 44, 433-438. https://doi.org/10.1134/S106741361305005610.1134/S1067413613050056
  17. Graham, J. H., Raz, S., Hel-Or, H., & Nevo, E. (2010). Fluctuating asymmetry: methods, theory, and applications. Symmetry, 2, 466-540. https://doi.org/10.3390/sym202046610.3390/sym2020466
  18. Gençer, H. V., & Firatli, Ç. (2005). Reproductive and morphological comparisons of drones reared in queenright and laying worker colonies. Journal of Apicultural Research, 44, 163-167. https://doi.org/10.1080/00218839.2005.1110117210.1080/00218839.2005.11101172
  19. Grønkjær, P., & Sand, M. K. (2003). Fluctuating asymmetry and nutritional condition of Baltic cod (Gadus morhua) larvae. Marine Biology, 143, 191-197. https://doi.org/10.1007/s00227-003-1064-110.1007/s00227-003-1064-1
  20. Haydak, M. H. (1970). Honey bee nutrition. Annual Review of Entomology, 15, 143-156. https://doi.org/10.1146/annurev.en.15.010170.00104310.1146/annurev.en.15.010170.001043
  21. Hoover, S. E. R., Higo, H. E., & Winston, M. L. (2006). Worker honey bee ovary development: seasonal variation and the influence of larval and adult nutrition. Journal of Comparative Physiology B, 176, 55-63. https://doi.org/10.1007/s00360-005-0032-010.1007/s00360-005-0032-016228242
  22. Hrassnigg, N., & Crailsheim, K. (2005). Differences in drone and worker physiology in honeybees (Apis mellifera). Apidologie, 36, 255-277. https://doi.org/10.1051/apido:200501510.1051/apido:2005015
  23. Hrassnigg, N., Brodschneider, R., Fleischmann, P.H., & Crailsheim K. (2005). Unlike nectar foragers, honeybee drones (Apis mellifera) are not able to utilize starch as fuel for flight. Apidologie 36, 547-557. https://doi.org/10.1051/apido:200504210.1051/apido:2005042
  24. Huang, Z-Y., & Otis, G. W. (1991). Inspection and feeding of larvae by worker honey bees (Hymenoptera: Apidae): Effect of starvation and food quantity. Journal of Insect Behavior, 4, 305-317. https://doi.org/10.1007/BF0104828010.1007/BF01048280
  25. Human, H., Brodschneider R., Dietemann, V., Dively, G., Ellis, J.D., Forsgren, ... Zheng, H-Q. (2013). Miscellaneous standard methods for Apis mellifera research. The COLOSS BEEBOOK Volume I: standard methods for Apis mellifera research. (eds. V. Dietemann, J.D. Ellis, P. Neumann), Journal of Apicultural Research, 52(4), http://dx.doi.org/10.3896/IBRA.1.52.4.10.10.3896/IBRA.1.52.4.10
  26. Imdorf, A., Rickli, M., Kilchenmann, V., Bogdanov, S., Wille, H. (1998). Nitrogen and mineral constituents of honey bee worker brood during pollen shortage. Apidologie, 29, 315-25. https://doi.org/10.1051/apido:1998040210.1051/apido:19980402
  27. Jaffé, R., & Moritz, R. F. A. (2010). Mating flights select for symmetry in honeybee drones (Apis mellifera). Naturwissenschaften, 9, 337-343. https://doi.org/10.1007/s00114-009-0638-210.1007/s00114-009-0638-220012931
  28. Jay, C. S. (1963). The development of honeybees in their cells. Journal of Apicultural Research, 2, 117-134. http://dx.doi.org/10.1080/00218839.1963.1110007210.1080/00218839.1963.11100072
  29. Jones, J., Helliwell, P., Beekman, M., Maleszka, R., Oldroyd, B. P. (2005). The effects of rearing temperature on developmental stability and learning and memory in the honey bee, Apis mellifera. Journal of Comparative Physiology A, 191, 1121-1129. https://doi.org/10.1007/s00359-005-0035-z10.1007/s00359-005-0035-z16049697
  30. Klingenberg, C.P. (2011). MorphoJ: An integrated software ackage for geometric morphometrics. Molecular Ecology Resources, 11, 353-57. https://doi.org/10.1111/j.1755-0998.2010.02924.x10.1111/j.1755-0998.2010.02924.x21429143
  31. Köppler, K., Vorwohl, G., & Koeniger, N. (2007). Comparison of pollen spectra collected by four different subspecies of the honey bee Apis mellifera. Apidologie, 38, 341-53. https://doi.org/10.1051/apido:200702010.1051/apido:2007020
  32. Kunert, K., & Crailsheim, K. (1985). Seasonal changes in carbohydrate, lipid and protein content in emerging worker honeybees and their mortality. Journal of Apicultural Research, 27, 13-21. http://dx.doi.org/10.1080/00218839.1988.1110077510.1080/00218839.1988.11100775
  33. Łopuch, S., & Tofilski, A. (2016). The relationship between asymmetry, size and unusual venation in honey bees (Apis mellifera). Bulletin of Entomological Research, 106, 304-13. https://doi.org/10.1017/S000748531500078410.1017/S000748531500078427241228
  34. Mattila, H. R., & Otis, G. W. (2006). The effects ofpollen availability during larval development on the behaviour and physiology of spring-reared honey bee workers. Apidologie, 37, 533-546. https://doi.org/10.1051/apido:200603710.1051/apido:2006037
  35. Matsuka, M., Watabe, N., & Takeuchi, K. (1973). Analysis of the food of larval drone honeybees. Journal of Apicultural Research, 12, 3-7. http://dx.doi.org/10.1080/00218839.1973.1109972410.1080/00218839.1973.11099724
  36. Mazeed, A. M. (2011). Morphometry and number of spermatozoa in drone honeybees (Hymenoptera: Apidae) reared under different conditions. European Journal of Entomology, 108, 673-676. https://doi.org/10.14411/eje.2011.08510.14411/eje.2011.085
  37. Odoux, J-F., Feuillet, D., Aupinel, P., Loublier, Y., Tasei, J-N., Mateescu, C. (2012). Territorial biodiversity and consequences on physico-chemical characteristics of pollen collected by honey bee colonies. Apidologie, 43, 561-575. https://doi.org/10.1007/s13592-012-0125-110.1007/s13592-012-0125-1
  38. Ohlsson, T., & Smith, H. G. (2001). Early Nutrition Causes Persistent Effects on Pheasant Morphology. Physiological and Biochemical Zoology, 74, 212-218. https://doi.org/10.1086/31965710.1086/31965711247740
  39. Ondo Zue Abaga, N., Alibert, P., Dousset, S., Savadogo, P. W., Savadogo, M., Sedogo, M. (2011). Insecticide residues in cotton soils of Burkina Faso and effects of insecticides on fluctuating asymmetry in honey bees (Apis mellifera Linnaeus). Chemosphere, 83, 585-592. https://doi.org/10.1016/j.chemosphere.2010.12.02110.1016/j.chemosphere.2010.12.02121190716
  40. Palmer, A. R. (1994). Fluctuating asymmetry analyses. In: Developmental Instability: Its Origins and Evolutionary Implications, Contemporary Issues in Genetics and Evolution 2 (pp 335-364). Netherlands: Springer.
  41. Pernal S.F., & Currie R.W. (2000) Pollen quality of fresh and 1-year-old singel pollen diets for worker honey bees (Apis mellifera L.). Apidologie, 31, 387-409. https://doi.org/10.1051/apido:200013010.1051/apido:2000130
  42. Schlüns, H., Schlüns, E. A., van Praagh, J., & Moritz, R.F. (2003). Sperm numbers in drone honeybees (Apis mellifera) depend on body size. Apidologie, 34, 577-584. https://doi.org/10.1051/apido:200305110.1051/apido:2003051
  43. Schneider, S. S., Leamy, J., Lewis, A., & Degrandi-Hoffman, G. (2003). The influence of hybridization between African and European honeybees, Apis mellifera, on asymmetries in wing size and shape. Evolution, 57, 2350-2364. https://doi.org/10.1111/j.0014-3820.2003.tb00247.x10.1111/j.0014-3820.2003.tb00247.x14628923
  44. Schmickl, T., & Crailsheim, K. (2001). Cannibalism and early capping: strategy of honeybee colonies in times of experimental pollen shortages. Journal of Comparative Physiology A, 187, 541-547. https://doi.org/10.1007/s00359010022610.1007/s00359010022611730301
  45. Schmickl, T., & Crailsheim, K. (2002). How honeybees (Apis mellifera L.) change their broodcare behaviour in response to non-foraging conditions and poor pollen conditions. Behavioral and Ecological Sociobiology, 51, 415-25. https://doi.org/10.1007/s00265-002-0457-310.1007/s00265-002-0457-3
  46. Scofield, H. N., & Mattila, H. R. (2015). Honey bee workers that are pollen stressed as larvae become poor foragers and waggle dancers as adults. PLoS ONE, 10(4), e0121731. https://doi.org/10.1371/journal.pone.012173110.1371/journal.pone.0121731439023625853902
  47. Smith, D. R., Crespi, B. J., & Bookstein, F. L. (1997). Fluctuating asymmetry in the honey bee, Apis mellifera: effects of ploidy and hybridization. Journal of Evolutionary Biology, 10, 551-574. https://doi.org/10.1046/j.1420-9101.1997.10040551.x10.1046/j.1420-9101.1997.10040551.x
  48. StatSoft Inc (2011). STATISTICA (data analysis software system), version 10. www.statsoft.com.
  49. Szentgyörgyi, H., Czekońska, K., & Tofilski, A. (2016). Influence of pollen deprivation on the forewing asymmetry of honeybee workers and drones. Apidologie, 47(5), 653-662. https://doi.org/10.1007/s13592-015-0415-510.1007/s13592-015-0415-5
  50. Taha, E. L. K. A., & Alqarni, A.S. (2013). Morphometric and reproductive organs characters of Apis mellifera jemenitica drones in comparison to Apis mellifera carnica. International Journal of Scientific and Engineering Research, 4, 411-415.
  51. Tofilski, A. (2004). DrawWing, a program for numerical description of insect wings. Insect Science, 4, 17. https://doi.org/10.1673/031.004.170110.1673/031.004.1701
  52. Wang, Y., Kaftanoglu, O., Fondrk, M. K., & Page, R.E., Jr (2014). Nurse bee behaviour manipulates worker honeybee (Apis mellifera L.). Animal Behavior, 92, 253-261. https://doi.org/10.1016/j.anbehav.2014.02.01210.1016/j.anbehav.2014.02.012
  53. Woyke, J. (1978). Comparative biometrical investigation on diploid drones of the honeybee III. The abdomen, and weight. Journal of Apicultural Research, 17, 206-217. http://dx.doi.org/10.1080/00218839.1978.1109992810.1080/00218839.1978.11099928
  54. Zaitoun, S., Al-Majeed Al-Ghzawi, A., & Kridli, R. (2009). Monthly changes in various drone characteristics of Apis mellifera ligustica and Apis mellifera syriaca. Entomological Science, 12, 208-214. https://doi.org/10.1111/j.1479-8298.2009.00324.x10.1111/j.1479-8298.2009.00324.x
DOI: https://doi.org/10.1515/jas-2017-0018 | Journal eISSN: 2299-4831 | Journal ISSN: 1643-4439
Language: English
Page range: 233 - 243
Submitted on: Mar 18, 2017
Accepted on: Dec 29, 2017
Published on: Dec 12, 2017
Published by: Research Institute of Horticulture
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2017 Hajnalka Szentgyörgyi, Krystyna Czekońska, Adam Tofilski, published by Research Institute of Horticulture
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.