Have a personal or library account? Click to login
Effects of Lactobacillus Johnsonii AJ5 Metabolites on Nutrition, Nosema Ceranae Development and Performance of Apis Mellifera L. Cover

Effects of Lactobacillus Johnsonii AJ5 Metabolites on Nutrition, Nosema Ceranae Development and Performance of Apis Mellifera L.

Open Access
|Jun 2017

References

  1. Alaux, C., Brunet, J. L., Dussaubat, C., Mondet, F., Tchamitchan, S., Cousin, M., Brillard, J., Baldy, A., Belzunces, L. P., Le Conte, Y. (2010a). Interactions between Nosema microspores and a neonicotinoid weaken honeybees (Apis mellifera). Environmental Microbiology, 12, 774-782. doi:10.1111/j.1462-2920.2009.02123.x.
  2. Alaux, C., Ducloz, F., Crauser, D., Le Conte, Y. (2010b). Diet effects on honeybee immunocompetence. Biology Letters, 6 (4), 562-565.10.1098/rsbl.2009.0986293619620089536
  3. Alberoni, D., Gaggìa, F., Baffoni, L., Di Gioia, D. (2016). Beneficial microorganisms for honey bees: problems and progresses. Applied Microbiology and Biotechnolology, 100, 9469-9482. doi: 10.1007/s00253-016-7870-4.
  4. Amdam, G. V., & Omholt, S. W. (2002). The Regulatory Anatomy of Honeybee Lifespan. Journal Theoretical Biology, 216, 209-228.10.1006/jtbi.2002.254512079372
  5. Anon (1979). BioRad Laboratories Bulletin 1069: BioRad protein assay instruction manual. BioRad Laboratories, Richmond, California, USA. 17pp.
  6. Antúnez, K., Martín-Hernández, R., Prieto, L., Meana, A., Zunino, P., Higes, M. (2009), Immune suppression in the honey bee (Apis mellifera) following infection by Nosema ceranae (Microsporidia). Environmental Microbiology, 11, 2284-2290. doi:10.1111/j.1462-2920.2009.01953.x.
  7. Arrese, E. L., & Soulages, J. L. (2010). Insect Fat Body: Energy, Metabolism, and Regulation. Annual Review of Entomology, 55, 207-25. doi: 10.1146/annurevento-112408-085356.
  8. Audisio, C. M. (2016). Gram-Positive Bacteria with Probiotic Potential for the Apis mellifera L. Honey Bee: The Experience in the Northwest of Argentina. Probiotics and Microbials Proteins, 1-10. doi: 10.1007 / s12602-016-9231-0.
  9. Audisio, M. C., & Benítez-Ahrendts, M. R. (2011). Lactobacillus johnsonii CRL1647, isolated from Apis mellifera L. bee-gut, exhibited a beneficial effect on honeybee colonies. Beneficial Microbes, 2(1), 29-34.
  10. Audisio, M. C., Torres, M. J., Sabaté, D. C., Ibarguren, C., Apella, M. C. (2011). Properties of different lactic acid bacteria isolated from Apis mellifera L. beegut. Microbiological Research, 1, 1-13.
  11. Audisio, M. C., Sabaté, D. C., Benítez-Ahrendts, M. R. (2015). Effect of Lactobacillus johnsonii CRL1647 on different parameters of honeybee colonies and bacterial populations of the bee gut. Beneficial Microbes, 25, 1-10. doi: 10.3920/BM2014.0155
  12. Baffoni, L., Gaggìa, F., Alberoni, D., Cabbri, R., Nanetti, A., Biavati, B., Di Gioia, D. (2016). Effect of dietary supplementation of Bifidobacterium and Lactobacillus strains in Apis mellifera L. against Nosema ceranae. Benefical Microbes, 7(1), 45-51. doi:10.3920/BM2015.0085
  13. Bogdanov, S. (2006). Contaminants of bee products. Apidologie, 37, 1-18.10.1051/apido:2005043
  14. Bowen-Walker, P. L., & Gunn, A. (2001). The effect of the ectoparasitic mite, Varroa destructor on adult worker honeybee (Apis mellifera) emergence weights, water, protein, carbohydrate, and lipid levels. Entomologia Experimentalis et Applicata, 101(3), 207-217.10.1046/j.1570-7458.2001.00905.x
  15. Bradford, M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye-binding. Annals of Biochemistry, 72, 248-254.10.1016/0003-2697(76)90527-3
  16. Branco, M. R., Kid, N. A. C., & Pickard, R. S. (1999). Development of Varroa jacobsoni in colonies of Apis mellifera iberica in a Mediterranean climate. Apidologie, 30, 491-503.10.1051/apido:19990604
  17. Brodschneider, R., & Crailsheim, K. (2010). Nutrition and health in honey bees. Apidologie, 41(3), 278-294.10.1051/apido/2010012
  18. Brown, M. J. F., Moret, Y., & Schmid-hempel, P. (2003). Activation of host constitutive immune defence by an intestinal trypanosome parasite of bumble bees. Parasitology, 126, 253-260.10.1017/S003118200200275512666884
  19. Cantwell, G. E. (1970). Standard methods for counting Nosema spores. American Bee Journal, 110(6), 222-223.
  20. Corby-Harris, V., Snyder, L., Meador, C. A., Naldo, R., Mott, B., Anderson, K. E. (2016). Parasaccharibacter apium, gen. nov., sp. nov., improves honey bee (Hymenoptera: Apidae) resistance to Nosema. Journal of Economic Entomology, doi:10.1603/ICE.2016.94339
  21. Corona, M., Velarde, R. A., Remolina, S., Adrienne Moran-Lauter, A., Wang, Y., Hughes, K. A., Robinson, G. E. (2007). Vitellogenin, juvenile hormone, insulin signaling, and queen honey bee longevity. National Academy of Sciences, 104 (17), 7128-7133.10.1073/pnas.0701909104185233017438290
  22. Crotti, E., Balloi, A., Hamdi, C., Sansonno, L., Marzorati, M., Gonella, E., Favia, G., Cherif, A., Bandi, C., Alma, A., Daffonchio, D. (2012). Microbial symbionts: a resource for the management of insect-related problems. Microbiology Biotechnology, 5, 307-317. doi:10.1111/j.1751- 7915.2011.00312.x.
  23. de Oliveira, V. T. P., & da Cruz-landim, C. (2003). Morphology and function of insect fat body cells: a review. Biociências, 11 (2), 195-205.
  24. Dillon, R. J., & Dillon, V. M. (2004). The gut bacteria of insects: Nonpathogenic Interactions. Annual Review of Entomology, 49, 71-92.10.1146/annurev.ento.49.061802.12341614651457
  25. Ellers, J. (1996). Fat and eggs: an alternative method to measure the trade-off between survival and reproduction in insect parasitoids. Netherlands Journal of Zoology, 46, 227-235.10.1163/156854295X00186
  26. Engel, P., Martinson, V. G., Moran, N. A. (2012). Functional diversity within the simple gut microbiota of the honey bee. Proceedings of the National Academy of Sciences of the United States of America, 109(27), 11002-11007.10.1073/pnas.1202970109339088422711827
  27. Evans, J. D., & Lopez, D. L. (2004). Bacterial probiotics induce an immune response in the honey bee (Hymenoptera: Apidae). Journal of economic entomology, 97(3), 752-6.10.1093/jee/97.3.752
  28. Forsgren, E., Olofsson, T. C., Vásquez, A., Fries, I. (2009). Novel lactic acid bacteria inhibiting Paenibacillus larvae in honey bee larvae. Apidologie, 41(1), 99-108.10.1051/apido/2009065
  29. Forsgren, E., Fries, I. (2010). Comparative virulence of Nosema ceranae and Nosema apis in individual European honey bees. Veterinary Parasitology, 170, 212-217. doi:10.1016/j.vetpar.2010.02.010
  30. Fries, I. (1988). Infectivity and multiplication of Nosema apis z. in the ventriculus of the honey bee. Apidologie, 19(3), 319-328.10.1051/apido:19880310
  31. Fries, I. (2010). Nosema ceranae in European honey bees (Apis mellifera). Journal of Invertebrate Pathology, 103, S73-S79.10.1016/j.jip.2009.06.01719909977
  32. Fries, I. F., da Silva, A., Slemenda, S. B., Pieniazek, N. J. (1996). Nosema ceranae n. sp. (Microspora, Nosematidae), Morphological and Molecular Characterization of a Microsporidian Parasite of the Asian Honey bee Apis cerana (Hymenoptera, Apidae). European Journal of Protistology, 32(3), 356-365.
  33. Gündüz, E. A., & Douglas, A. E. (2009). Symbiotic bacteria enable insect to use a nutritionally inadequate diet. Proceedings of the Royal Society London Biology Science, 276, 987-991. doi:10.1098/rspb.2008.1476
  34. Higes, M., Martín, R., & Meana, A. (2006). Nosema ceranae, a new microsporidian parasite in honeybees in Europe. Journal of Invertebrate Pathology, 92, 93-95.10.1016/j.jip.2006.02.00516574143
  35. Higes, M., García-Palencia, P., Martín-Hernández, R., Meana, A. (2007). Experimental infection of Apis mellifera honeybees with Nosema ceranae (Microsporidia). Journal of Invertebrate Pathology, 94, 211-217.10.1016/j.jip.2006.11.00117217954
  36. Higes, M., Martín-Hernández, R., Botías, C., Bailón, E. G., González-Porto, A. V., Barrios, L., del Nozal, M. J., Bernal, J. L., Jiménez, J. J., Palencia, P. G., Meana, A. (2008). How natural infection by Nosema ceranae causes honeybee colony collapse. Environmental Microbiology, 10, 2659-2669. doi:10.1111/j.1462-2920.2008.01687.x
  37. Janashia, I., & Alaux, C. (2016). Specific Immune Stimulation by Endogenous Bacteria in Honey Bees (Hymenoptera: Apidae). Journal of Economic Entomology, 1-4. doi: 10.1093/jee/tow065.
  38. Jefferson, J. M., Dolstad, H. A., Sivalingam, M. D., Snow, J. W. (2013). Barrier immune effectors are maintained during transition from nurse to forager in the honey bee. PLoS One, 8(1), e54097. doi:10.1371/journal.pone.0054097
  39. Maggi, M., Ruffinengo, S., Damiani, N., Sardella, N., Eguaras, M. (2009). First detection of Varroa destructor resistance to coumaphos in Argentina. Experimental and Applied Acarology, 47, 317-320.10.1007/s10493-008-9216-019009360
  40. Maggi, M., Ruffinengo, S., Negri, P., Eguaras, M. (2010). Resistance phenomena to amitraz from populations of the ectoparasitic mite Varroa destructor o f A rgentina. Parasitology Research, 107, 1189-1192.10.1007/s00436-010-1986-820668878
  41. Maggi, M., Ruffinengo, S., Mendoza, Y., Ojeda, P., Ramallo, G., Floris, I., Eguaras, M. (2011). Susceptibility of Varroa destructor (Acari: Varroidae) to synthetic acaricides in Uruguay: Varroa mites’ potential to develop acaricide resistance. Parasitology Research, 108, 815-821.10.1007/s00436-010-2122-520978789
  42. Maggi, M., Negri, P., Plischuk, S., Szawarski, N., De Piano, F., De Feudis, L., Eguaras, M., Audisio, C. (2013). Effects of the organic acids produced by a lactic acid bacterium in Apis mellifera colony development, Nosema ceranae control and fumagillin efficiency. Vet erinary Microbiology, 167, 474-483.10.1016/j.vetmic.2013.07.03023978352
  43. Mattila, H. R., Rios, D., Walker-Sperling, V. E., Roeselers, G., Newton, I. L. G. (2012). Characterization of the active microbiotas associated with honey bees reveals healthier and broader communities when colonies are genetically diverse. PLoS ONE, 7(3), e32962. doi:10.1371/journal.pone.0032962
  44. Medici, S. (2010.) Determinación del contenido de residuos de acaricidas y antibióticos en miel y cera en colmenares argentinos destinados a la producción. Suplemento APINOTIC&AS 2.
  45. Moran, N. A. (2015). Genomics of the honey bee microbiome. Current Opinion in Insect Science, 10, 22-28. doi:10.1016/j.cois.2015.04.003
  46. Naug, D. (2009). Nutritional stress due to habitat loss may explain recent honeybee colony collapses. Biological Conservation, 142 (10), 2369-2372.10.1016/j.biocon.2009.04.007
  47. Neumann, P., & Carreck, N. L. (2010). Honey bee colony losses. Journal of Apicultural Research, 49(1), 1-6.10.3896/IBRA.1.49.1.01
  48. Newton, I. L., Sheehan, K. B., Lee, F.J., Horton, M. A., Hicks, R. D. (2013). Invertebrate systems for hypothesis- driven microbiome research. Microbiome Science and Medicine, 1(1). doi:10.2478/micsm-2013-0001
  49. Oldroyd, B. P., (2007). What’s killing American honey bees? PLoS Biology, 5(6), e168. doi:10.1371/journal.pbio.0050168.
  50. Paxton, R. (2010). Does infection by Nosema ceranae cause “Colony Collapse Disorder” in honey bees (Apis mellifera)? Journal of Apicultural Research, 49(1), 80-84. doi: 10.3896/IBRA.1.49.1.11
  51. Porrini, M. P., Audisio, M. C., Sabaté, D. C., Ibarguren, C., Medici, S. K., Sarlo, E. G., Garrido, P. M., Eguaras, M. (2010). Effect of bacterial metabolites on microsporidian Nosema ceranae and on its host Apis mellifera. Parasitology research, 107(2), 381-8.10.1007/s00436-010-1875-120467753
  52. Sabaté, D. C., Carrillo, L., & Audisio, M. C. (2009). Inhibition of Paenibacillus larvae and Ascosphaera apis by Bacillus subtilis isolated from honeybee gut and honey samples. Research in Microbiology, 160, 193-199.10.1016/j.resmic.2009.03.00219358885
  53. Sabaté, D. C., Cruz, M. S., Benítez-Ahrendts, M. R., Audisio, M. C. (2012). Beneficial Effects of Bacillus subtilis subsp. subtilis Mori2, a Honey-Associated Strain, on Honeybee Colony Performance. Probiotics and Antimicrobial Proteins, 4, 39-46.
  54. Simion, G., Trif, A., Cara, M. C. & Damiescu, L. (2011). Evaluation of tetracyclines’ and cloramphenicol’s residues levels in honey from Timis County between 2007 and 2010. (1), 264-269.
  55. Smart, M., & Sheppard, M. (2012). Nosema ceranae in age cohorts of the western honey bee (Apis mellifera). Journal of Invertebrate Pathology, 109, 148-151.10.1016/j.jip.2011.09.00922001631
  56. Undeen, A. H., & Vávra, J. (1997). Research methods for entomopathogenic Protozoa. Manual of Techniques in Insect Pathology. Academic Press, London. pp. 117-151.10.1016/B978-012432555-5/50010-5
  57. vanEngelsdorp, D., Evans, J. D., Saegerman, C., Mullin, C., Haubruge, E., Nguyen, B. K., Frazier, M., Frazier, J., Coxfoster, D., Chen, Y., Underwood, R. M., Tarpy, D. R., Pettis, J. S. (2009). Colony Collapse Disorder: a descriptive study. PloS ONE, 4(8), e6481. doi:10.1371/journal.pone.0006481
  58. Vásquez, A., Forsgren, E., Fries, I., Paxton, R., Flaberg, E., Szekely, L., Olofsson, T. C. (2012). Symbionts as major modulators of insect health: lactic acid bacteria and honeybees. PLoS ONE, 7 (3), e33188. doi: 10.1371 / journal.pone.0033188
  59. Wilson-Rich, N., Dres, S. T., & Starks, P. T. (2008). The ontogeny of immunity: development of innate immune strength in the honey bee (Apis mellifera). Journal of insect physiology, 54(10-11), 1392-9.10.1016/j.jinsphys.2008.07.01618761014
  60. Yoshiyama, M., & Kimura, K. (2009). Bacteria in the gut of Japanese honeybee, Apis cerana japonica, and their antagonistic effect against Paenibacillus larvae, the causal agent of American foulbrood. Journal of Invertebrate Pathology, 102, 91-96. doi:10.1016/j.jip.2009.07.005
  61. Yoshiyama, M., Sugimura, Y., Takaya, N., Kimoto-Nira, H., Suzuki, C. (2013). Inhibition of Paenibacillus larvae by lactic acid bacteria isolated from fermented materials. Journal of Invertebrate Pathology, 112, 62-67. doi:10.1016/j.jip.2012.09.002
DOI: https://doi.org/10.1515/jas-2017-0007 | Journal eISSN: 2299-4831 | Journal ISSN: 1643-4439
Language: English
Page range: 93 - 104
Submitted on: May 10, 2016
Accepted on: Feb 13, 2017
Published on: Jun 16, 2017
Published by: Research Institute of Horticulture
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2017 Fiorella G. De Piano, Matias Maggi, María C. Pellegrini, Noelia M. Cugnata, Nicolas Szawarski, Franco Buffa, Pedro Negri, Sandra R. Fuselli, Carina M. Audisio, Sergio R. Ruffinengo, published by Research Institute of Horticulture
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.