Have a personal or library account? Click to login

LARGE Estimation of the stress-strength reliability of progressively censored inverted exponentiated Rayleigh distributions

Open Access
|Jun 2017

References

  1. Abouammoh, A.M. and Alshingiti, A.M. (2009). Reliability estimation of generalized inverted exponential distribution. Journal of Statistical Computation and Simulation. 79, 1301-1315.10.1080/00949650802261095
  2. Ahmad, K.E., Fakhry, M.E. and Jaheen, Z.F. (1997). Empirical Bayes estimation of P(Y < X) and characterization of Burr-Type X model. Journal of Statistical Planning and Inference. 64, 297-308.10.1016/S0378-3758(97)00038-4
  3. Asgharzadeh, A., Valiollahi, R. and Raqab, M.Z. (2011). Stress-strength reliability of Weibull distribution based on progressively censored samples. SORT. 35, 103-124.
  4. Badar, M.G. and Priest, A.M. (1982). Statistical aspects of fiber and bundle strength in hybrid composites. In: Hayashi, T., Kawata, K., Umekawa, S. (Eds.). Progress in Science and Engineering Composites. ICCM-IV, Tokyo. 1129-1136.
  5. Balakrishnan, N. and Aggarwala, R. (2000). Progressive censoring: theory, methods and applications. Birkhauser, Boston.
  6. Birnbaum, Z.W. (1956). On a use of Mann-Whitney statistics. Proceedings of the third Berkley Symposium in Mathematics, Statistics and Probability. 1, 13-17.10.1525/9780520313880-005
  7. Cao, J.H. and Cheng, K. (2006). An introduction to the reliability mathmematics. Beijing: Higher Education Press.
  8. Chen, M.H. and Shao, Q.M. (1999). Monte Carlo estimation of Bayesian Credible and HPD intervals. Journal of Computational and Graphical Statistics. 8, 69-92.10.1080/10618600.1999.10474802
  9. Efron, B. (1982). The jackknife, the bootstrap and other re-sampling plans. Philadelphia, PA: SIAM, CBMSNSF Regional Conference Series in Applied Mathematics. 34.10.1137/1.9781611970319
  10. Gradshteyn, I.S. and Ryzhik, I. M. (1994). Table of Integrals, Series, and Products. 5th ed., Academic Press, Boston, MA.
  11. Ghitany, M.E., Tuan, V.K. and Balakrishnan, N. (2012). Likelihood estimation for a general class of inverse exponentiated distributions based on complete and progressively censored data. Journal of Statistical Computation and Simulation. 84, 96-106.
  12. Hall, P. (1988). Theoretical comparison of bootstrap confidence intervals. Annals of Statistics. 16, 927-953.10.1214/aos/1176350933
  13. Johnson, N.L., Kotz, S. and Balakrishnan, N. (1994). Continuous Univariate Distributions. 2nd ed., Wiley, NewYork.
  14. Kotz, S., Lumelskii, Y. and Pensky, M. (2003). The stress-strength model and its generalization: theory and applications. World Scientific, Singapore.10.1142/5015
  15. Krishnamoorthy, K., Mukherjee, S. and Guo, H. (2007). Inference on reliability in two-parameter exponential stress-strength model. Metrika. 65, 261-273.10.1007/s00184-006-0074-7
  16. Kundu, D. and Gupta, R.D. (2005). Estimation of R = P(Y < X) for the generalized exponential distribution. Metrika. 61, 291-308.10.1007/s001840400345
  17. Kundu, D. and Gupta, R.D. (2006). Estimation of R = P(Y < X) for Weibull distribution. IEEE Transactions on Reliability. 55, 270-280.10.1109/TR.2006.874918
  18. Kundu, D. and Raqab, M.Z. (2009). Estimation of R=P(Y <X) for three parameterWeibull distribution. Statistics and Probability Letters. 79, 1839-1846.10.1016/j.spl.2009.05.026
  19. Lindley, D.V. (1980). Approximate Bayesian methods. Trabajos de Estadistica. 3, 281-288.
  20. Lio, Y.L. and Tsai, T.R. (2012). Estimation of d = P(X < Y) for Burr XII distribution based on the progressively first failure-censored samples. Journal of Applied Statistics. 39, 309-322.10.1080/02664763.2011.586684
  21. Raqab, M.Z. and Kundu, D. (2005). Comparison of different estimators of P(Y < X) for a scaled Burr Type X distribution. Communications in Statistics - Simulation and Computation. 34, 465-483.10.1081/SAC-200055741
  22. Raqab, M.Z., Madi, M.T. and Kundu, D. (2008). Estimation of R = P(Y < X) for the 3-parameter generalized exponential distribution. Communications in Statistics - Theory and Methods. 37, 2854-2864.10.1080/03610920802162664
  23. Rastogi, M.K. and Tripathi, Y.M. (2014). Estimation for an inverted exponentiated Rayleigh distribution under type II progressive censoring. Journal of Applied Statistics. 41, 2375-2405.10.1080/02664763.2014.910500
  24. Saracoglu, B., Kinaci, I., Kundu, D. (2012). On estimation of R = P(Y < X) for exponential distribution under progressive type-II censoring. Journal of Statistical Computation and Simulation. 82, 729-744.10.1080/00949655.2010.551772
  25. Shoaee, S., and Khorram, E. (2015). Stress-strength reliability of a two-parameter bathtub-shaped lifetime distribution based on progressively censored samples. Communications in Statistics - Theory and Method. 44, 5306-5328.10.1080/03610926.2013.821485
DOI: https://doi.org/10.1515/jamsi-2017-0004 | Journal eISSN: 1339-0015 | Journal ISSN: 1336-9180
Language: English
Page range: 49 - 76
Published on: Jun 23, 2017
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2017 Akram Kohansal, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.