Ahmad, K.E., Fakhry, M.E. and Jaheen, Z.F. (1997). Empirical Bayes estimation of P(Y < X) and characterization of Burr-Type X model. Journal of Statistical Planning and Inference. 64, 297-308.10.1016/S0378-3758(97)00038-4
Asgharzadeh, A., Valiollahi, R. and Raqab, M.Z. (2011). Stress-strength reliability of Weibull distribution based on progressively censored samples. SORT. 35, 103-124.
Badar, M.G. and Priest, A.M. (1982). Statistical aspects of fiber and bundle strength in hybrid composites. In: Hayashi, T., Kawata, K., Umekawa, S. (Eds.). Progress in Science and Engineering Composites. ICCM-IV, Tokyo. 1129-1136.
Birnbaum, Z.W. (1956). On a use of Mann-Whitney statistics. Proceedings of the third Berkley Symposium in Mathematics, Statistics and Probability. 1, 13-17.10.1525/9780520313880-005
Chen, M.H. and Shao, Q.M. (1999). Monte Carlo estimation of Bayesian Credible and HPD intervals. Journal of Computational and Graphical Statistics. 8, 69-92.10.1080/10618600.1999.10474802
Efron, B. (1982). The jackknife, the bootstrap and other re-sampling plans. Philadelphia, PA: SIAM, CBMSNSF Regional Conference Series in Applied Mathematics. 34.10.1137/1.9781611970319
Ghitany, M.E., Tuan, V.K. and Balakrishnan, N. (2012). Likelihood estimation for a general class of inverse exponentiated distributions based on complete and progressively censored data. Journal of Statistical Computation and Simulation. 84, 96-106.
Kotz, S., Lumelskii, Y. and Pensky, M. (2003). The stress-strength model and its generalization: theory and applications. World Scientific, Singapore.10.1142/5015
Krishnamoorthy, K., Mukherjee, S. and Guo, H. (2007). Inference on reliability in two-parameter exponential stress-strength model. Metrika. 65, 261-273.10.1007/s00184-006-0074-7
Kundu, D. and Gupta, R.D. (2006). Estimation of R = P(Y < X) for Weibull distribution. IEEE Transactions on Reliability. 55, 270-280.10.1109/TR.2006.874918
Kundu, D. and Raqab, M.Z. (2009). Estimation of R=P(Y <X) for three parameterWeibull distribution. Statistics and Probability Letters. 79, 1839-1846.10.1016/j.spl.2009.05.026
Lio, Y.L. and Tsai, T.R. (2012). Estimation of d = P(X < Y) for Burr XII distribution based on the progressively first failure-censored samples. Journal of Applied Statistics. 39, 309-322.10.1080/02664763.2011.586684
Raqab, M.Z. and Kundu, D. (2005). Comparison of different estimators of P(Y < X) for a scaled Burr Type X distribution. Communications in Statistics - Simulation and Computation. 34, 465-483.10.1081/SAC-200055741
Raqab, M.Z., Madi, M.T. and Kundu, D. (2008). Estimation of R = P(Y < X) for the 3-parameter generalized exponential distribution. Communications in Statistics - Theory and Methods. 37, 2854-2864.10.1080/03610920802162664
Rastogi, M.K. and Tripathi, Y.M. (2014). Estimation for an inverted exponentiated Rayleigh distribution under type II progressive censoring. Journal of Applied Statistics. 41, 2375-2405.10.1080/02664763.2014.910500
Saracoglu, B., Kinaci, I., Kundu, D. (2012). On estimation of R = P(Y < X) for exponential distribution under progressive type-II censoring. Journal of Statistical Computation and Simulation. 82, 729-744.10.1080/00949655.2010.551772
Shoaee, S., and Khorram, E. (2015). Stress-strength reliability of a two-parameter bathtub-shaped lifetime distribution based on progressively censored samples. Communications in Statistics - Theory and Method. 44, 5306-5328.10.1080/03610926.2013.821485