E. Hopf, The partial differential equation Ut +UUx -nUxx = 0; Communications on Pure and Applied Mathematics, Vol. 3, pp. 201-30.10.1002/cpa.3160030302
M. A. Ramadan and T. S. El-Danaf, Numerical treatment for the modified burgers equation, Matmematics and Computers in Simulation 70 (2005) 90-98.10.1016/j.matcom.2005.04.002
M. A. Ramadan , T. S. El-Danaf and F. E.I. Abd Alaal, A numerical solution of the Burgers equation using septic B-splines, Chaos, Solitons and Fractals 26 (2005) 795-804.10.1016/j.chaos.2005.01.054
D. Irk, Sextic B-spline collocation method for the modified Burgers’ equation, Kybernetes, Vol. 38, No. 9, 2009, pp. 1599-1620.10.1108/03684920910991568
R.S. Temsah, Numerical solutions for convection-diffusion equation using El-Gendi method, Communications in Nonlinear Science and Numerical Simulation 14 (2009) 760-769.10.1016/j.cnsns.2007.11.004
A. Griewank and T. S. El-Danaf, Efficient accurate numerical treatment of the modified Burgers’ equation, Applicable Analysis, vol. 88, No. 1, January 2009, 75-87.10.1080/00036810802556787
A. G. Bratsos, An implicit numerical scheme for the modified Burgers’ equation, in HERCMA 2009 (9o Hellenic-European Conference on Computer Mathematics and its Applications), 24-26 September 2009, Athens, Greece.
A.G. Bratsos, A fourth-order numerical scheme for solving the modified Burgers equation, Computers and Mathematics with Applications 60 (2010) 1393 1400.
A. G. Bratsos and L. A. Petrakis, An explicit numerical scheme for the modified Burgers’ equation, International Journal for Numerical Methods in Biomedical Engneering, 2011, 27: 232-237.10.1002/cnm.1294
T. Roshan and K. S. Bhamra, Numerical solutions of the modified Burgers’ equation by Petrov-Galerkin method, Applied Mathematics and Computation, 218 (2011) 3673-3679.