Have a personal or library account? Click to login
Approximated Solutions of Linear Quadratic Fractional Optimal Control Problems Cover

Approximated Solutions of Linear Quadratic Fractional Optimal Control Problems

Open Access
|Dec 2016

References

  1. Alam, K. N., Uddin, K. N., Asmat, A., and Muhammad, J. (2012). Approximate analytical solutions of fractional reaction-diffusion equations. J King Saud Unive Sci., 24, 111-118.10.1016/j.jksus.2010.07.021
  2. Arikoglu, A., and Ozkol, I. (2007). Solution of a fractional differential equations by using differential transform method. Chaos Solit Fractals, 34, 1473-1481.10.1016/j.chaos.2006.09.004
  3. Alipour, M., Rostamy, D. and Baleanu, D. (2013). Solving multi-dimensional fractional optimal control problems with inequality constraint by Bernstein polynomials operational matrices. Journal of Vibration and Control, 19, 2523-2540.10.1177/1077546312458308
  4. Alizadeh, A., and Effati, S. (2016). An iterative approach for solving fractional optimal control problems. Journal of Vibration and Control, 8, 1-19.
  5. Adomian, G. (1989). Nonlinear Stochastic Systems Theory and Applications to Physics. Kluwer Academic Publishers Kluwer.10.1007/978-94-009-2569-4
  6. Adomian, G. (1988). A review of the decomposition method in applied mathematics. Journal of Mathematical Analysis and Applications, 135, 501-544.10.1016/0022-247X(88)90170-9
  7. Adomian, G. (1991). Solving frontier problems modelled by nonlinear partial differential equations. Computers and Mathematics with Applications, 22, 91-94.10.1016/0898-1221(91)90017-X
  8. Ahmed, E., and Elgazzar, A. S. (2007). On fractional order differential equations model for nonlocal epidemics. Physica A, 379, 607-614.10.1016/j.physa.2007.01.010
  9. Agrawal, O. P. (2004). A general formulation and solution scheme for fractional optimal control problems. Nonlinear Dynamics, 38, 323-337.10.1007/s11071-004-3764-6
  10. Agrawal, O. P. (2008). A Formulation and Numerical Scheme for Fractional Optimal Control Problems. Journal of Vibration and Control, 14, 1291-1299.10.1177/1077546307087451
  11. Abbaoui, K., and Cherruault, Y. (1994). Convergence of Adomian Method Applied to Nonlinear Equations. Mathematical and Computer Modelling, 20, 69-73.10.1016/0895-7177(94)00163-4
  12. Akbarian, T., and Keyanpour, M. (2013). A New Approach to the Numerical Solution of Fractional Order Optimal Control Problems. Applications and Applied Mathematics, 8, 523-534.
  13. Bhrawy, A. H., Doha, E. H., Machado, J. A. T. and Ezz-Eldien, S. S. (2015). An efficient numerical scheme for solving multi-dimensional fractional optimal control problems with a quadratic performance index. Asian Journal of Control, 18, 1-14.10.1002/asjc.1109
  14. Bohannan, G. W. (2008). Analog fractional order controller in temperature and motor control applications. Journal of Vibration and Control, 14, 1487-1498.10.1177/1077546307087435
  15. Changpin, Li., and Yihong, W. (2009). Numerical algorithm based on Adomian decomposition for fractional differential equations. Comput Math Appl, 57, 1672-1681.10.1016/j.camwa.2009.03.079
  16. Cole, K. S. (1993). Electric conductance of biological systems. in: Proc. Cold Spring Harbor Symp. Quant. Biol, Cold Spring Harbor, New York, 107-116.
  17. Duan, J., Jianye, An., and Mingyu, Xu. (2007). Solution of system of fractional differential equations by Adomian decomposition method. Appl Mathematics-A J Chin Univ, 22, 7-12.10.1007/s11766-007-0002-2
  18. Duan, J., Temuer, C., Randolph, R., and Lei, L. (2013). The Adomian decomposition method with convergence acceleration techniques for nonlinear fractional differential equations. Comput Math Appl, 66, 728-736.10.1016/j.camwa.2013.01.019
  19. Das, S. (2009). Analytical solution of a fractional diffusion equation by variational iteration method. Comput Math Appl, 57, 483-437.10.1016/j.camwa.2008.09.045
  20. Duan, J.S., Rach, R., Baleanu, D., and Wazwaz A. M. (2012). A review of the Adomian decomposition method and its applications to fractional differential equations. Commun. Fractional Calculus, 3, 73-99.
  21. Erturk, V. S., and Momani, S. (2008). Solving systems of fractional differential equations using differential transform method. J Comput Appl Math, 215, 142-151.10.1016/j.cam.2007.03.029
  22. Hosseini, M. M., and Nasabzadeh, H. (2006). On the convergence of Adomian decomposition method. Applied Mathematics and Computation, 182, 536-543.10.1016/j.amc.2006.04.015
  23. Hilfer, R. (2000). Applications of fractional calculus in physics. Singapore, Word Scientific Company.10.1142/3779
  24. Inc, M. (2008). The approximate and exact solutions of the space- and time-fractional Burger’s equations with initial conditions by variational iteration method. J Math Anal Appl, 345, 476-484.10.1016/j.jmaa.2008.04.007
  25. Jesus, I. S., Machado, J. A. T., and Cunha J. B. (2008). Fractional electrical impedances in botanical elements. Journal of Vibration and Control, 14, 1389-1402.10.1177/1077546307087442
  26. Jesus, I. S., Machado, J. A. T., and Cunha J. B. (2006). Fractional order electrical impedance of fruits and vegetables. in: Proceedings of the 25th IASTED International Conference MODELLING, IDENTIFICATION, AND CONTROL, February 6-8, Lanzarote, Canary Islands, Spain.
  27. Jiang, Y., and Ma, J. (2011). Higher order finite element methods for time fractional partial differential equations. J Comput Appl Math, 235, 3285-3290.10.1016/j.cam.2011.01.011
  28. Kilbas, A. A. A., Srivastava, H. M., and Trujillo J. J. (2006). Theory and applications of fractional differential equations. (Vol. 204). Elsevier Science Limited.
  29. Liu, J., and Hou, G. (2011). Numerical solutions of the space and time fractional coupled Burgers equation by generalized differential transform method. Appl Math Comput, 217, 7001-7008.10.1016/j.amc.2011.01.111
  30. Momani, S., and Odibat, Z. (2007). Numerical approach to differential equations of fractional orders. J Comput Appl Math, 207, 96-110.10.1016/j.cam.2006.07.015
  31. Meerschaert, M., and Tadjeran, C. (2006). Finite difference approximations for two sided space fractional partial differential equations. Appl Numer Math, 56, 80-90.10.1016/j.apnum.2005.02.008
  32. Nemati, A., and Yousefi, S.A. (2016). A Numerical Method for Solving Fractional Optimal Control Problems Using Ritz Method. Journal of Computational and Nonlinear Dynamics, 11, 051015-1-051015-7.10.1115/1.4032694
  33. Nigmatullin, R. R., and Nelson, S.O. (2006). Recognition of the fractional kinetics in complex systems: Dielectric properties of fresh fruits and vegetables form 0.01 to1.8 GHz. Signal Processing, 86, 2744-2759.10.1016/j.sigpro.2006.02.018
  34. Odibat, Z., and Momani, S. (2008). Numerical methods for nonlinear partial differential equations of fractional order. Appl Math Model, 32, 28-39.10.1016/j.apm.2006.10.025
  35. Odibat, Z., Momani, S., and Erturk, V. S. (2008). Generalized differential transform method: application to differential equations of fractional order. Appl Math Comput, 197,467-477.10.1016/j.amc.2007.07.068
  36. Pandey, R. K., Singh, O. P., and Baranwal, V. K. (2011). An analytic algorithm for the space-time fractional advectionedispersion equation. Comput Phys Commun, 182, 1134-44.10.1016/j.cpc.2011.01.015
  37. Petrovic, L. M., Spasic, D. T., and Atanackovic, T. M. (2005). On a mathematical model of a human root dentin. Dental Materials, 21, 125-128.10.1016/j.dental.2004.01.004
  38. Ray, S. S., and Bera, R. K. (2005). Analytical solution of BagleyeTorvik equation by Adomian decomposition method. Appl Math Comput, 168, 398-410.
  39. Saadatmandi, A., and Dehghan, M. (2010). A new operational matrix for solving fractional order differential equations. Comput Math Appl, 59, 1326-36.10.1016/j.camwa.2009.07.006
  40. Surez, J. I., Vinagre, B. M., and Chen, Y. (2008). A fractional adaptation scheme for lateral control of an AGV. Journal of Vibration and Control, 14, 1499-1511.10.1177/1077546307087434
  41. Samko, S. G., Kilbas, A. A., and Marichev O. I. (1993). Fractional integrals and derivatives. Theory and Applications, Gordon and Breach, Yverdon.
  42. Wazwaz, A. M., and El-Sayed, S. M. (2001). A new modification of the Adomian decomposition method for linear and nonlinear operators. Applied Mathematics and Computation, 122, 393-405.10.1016/S0096-3003(00)00060-6
  43. Zamani, M., Karimi-Ghartemani, M., and Sadati, N. (2007). FOPID controller design for robust performance using particle swarm optimization. Fractional Calculus and Applied Analysis, 10, 169-187.
DOI: https://doi.org/10.1515/jamsi-2016-0010 | Journal eISSN: 1339-0015 | Journal ISSN: 1336-9180
Language: English
Page range: 83 - 94
Published on: Dec 30, 2016
Published by: University of Ss. Cyril and Methodius in Trnava
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2016 S. Soradi Zeid, M. Yousefi, M. Yousefi, published by University of Ss. Cyril and Methodius in Trnava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.