References
- Alam, K. N., Uddin, K. N., Asmat, A., and Muhammad, J. (2012). Approximate analytical solutions of fractional reaction-diffusion equations. J King Saud Unive Sci., 24, 111-118.10.1016/j.jksus.2010.07.021
- Arikoglu, A., and Ozkol, I. (2007). Solution of a fractional differential equations by using differential transform method. Chaos Solit Fractals, 34, 1473-1481.10.1016/j.chaos.2006.09.004
- Alipour, M., Rostamy, D. and Baleanu, D. (2013). Solving multi-dimensional fractional optimal control problems with inequality constraint by Bernstein polynomials operational matrices. Journal of Vibration and Control, 19, 2523-2540.10.1177/1077546312458308
- Alizadeh, A., and Effati, S. (2016). An iterative approach for solving fractional optimal control problems. Journal of Vibration and Control, 8, 1-19.
- Adomian, G. (1989). Nonlinear Stochastic Systems Theory and Applications to Physics. Kluwer Academic Publishers Kluwer.10.1007/978-94-009-2569-4
- Adomian, G. (1988). A review of the decomposition method in applied mathematics. Journal of Mathematical Analysis and Applications, 135, 501-544.10.1016/0022-247X(88)90170-9
- Adomian, G. (1991). Solving frontier problems modelled by nonlinear partial differential equations. Computers and Mathematics with Applications, 22, 91-94.10.1016/0898-1221(91)90017-X
- Ahmed, E., and Elgazzar, A. S. (2007). On fractional order differential equations model for nonlocal epidemics. Physica A, 379, 607-614.10.1016/j.physa.2007.01.010
- Agrawal, O. P. (2004). A general formulation and solution scheme for fractional optimal control problems. Nonlinear Dynamics, 38, 323-337.10.1007/s11071-004-3764-6
- Agrawal, O. P. (2008). A Formulation and Numerical Scheme for Fractional Optimal Control Problems. Journal of Vibration and Control, 14, 1291-1299.10.1177/1077546307087451
- Abbaoui, K., and Cherruault, Y. (1994). Convergence of Adomian Method Applied to Nonlinear Equations. Mathematical and Computer Modelling, 20, 69-73.10.1016/0895-7177(94)00163-4
- Akbarian, T., and Keyanpour, M. (2013). A New Approach to the Numerical Solution of Fractional Order Optimal Control Problems. Applications and Applied Mathematics, 8, 523-534.
- Bhrawy, A. H., Doha, E. H., Machado, J. A. T. and Ezz-Eldien, S. S. (2015). An efficient numerical scheme for solving multi-dimensional fractional optimal control problems with a quadratic performance index. Asian Journal of Control, 18, 1-14.10.1002/asjc.1109
- Bohannan, G. W. (2008). Analog fractional order controller in temperature and motor control applications. Journal of Vibration and Control, 14, 1487-1498.10.1177/1077546307087435
- Changpin, Li., and Yihong, W. (2009). Numerical algorithm based on Adomian decomposition for fractional differential equations. Comput Math Appl, 57, 1672-1681.10.1016/j.camwa.2009.03.079
- Cole, K. S. (1993). Electric conductance of biological systems. in: Proc. Cold Spring Harbor Symp. Quant. Biol, Cold Spring Harbor, New York, 107-116.
- Duan, J., Jianye, An., and Mingyu, Xu. (2007). Solution of system of fractional differential equations by Adomian decomposition method. Appl Mathematics-A J Chin Univ, 22, 7-12.10.1007/s11766-007-0002-2
- Duan, J., Temuer, C., Randolph, R., and Lei, L. (2013). The Adomian decomposition method with convergence acceleration techniques for nonlinear fractional differential equations. Comput Math Appl, 66, 728-736.10.1016/j.camwa.2013.01.019
- Das, S. (2009). Analytical solution of a fractional diffusion equation by variational iteration method. Comput Math Appl, 57, 483-437.10.1016/j.camwa.2008.09.045
- Duan, J.S., Rach, R., Baleanu, D., and Wazwaz A. M. (2012). A review of the Adomian decomposition method and its applications to fractional differential equations. Commun. Fractional Calculus, 3, 73-99.
- Erturk, V. S., and Momani, S. (2008). Solving systems of fractional differential equations using differential transform method. J Comput Appl Math, 215, 142-151.10.1016/j.cam.2007.03.029
- Hosseini, M. M., and Nasabzadeh, H. (2006). On the convergence of Adomian decomposition method. Applied Mathematics and Computation, 182, 536-543.10.1016/j.amc.2006.04.015
- Hilfer, R. (2000). Applications of fractional calculus in physics. Singapore, Word Scientific Company.10.1142/3779
- Inc, M. (2008). The approximate and exact solutions of the space- and time-fractional Burger’s equations with initial conditions by variational iteration method. J Math Anal Appl, 345, 476-484.10.1016/j.jmaa.2008.04.007
- Jesus, I. S., Machado, J. A. T., and Cunha J. B. (2008). Fractional electrical impedances in botanical elements. Journal of Vibration and Control, 14, 1389-1402.10.1177/1077546307087442
- Jesus, I. S., Machado, J. A. T., and Cunha J. B. (2006). Fractional order electrical impedance of fruits and vegetables. in: Proceedings of the 25th IASTED International Conference MODELLING, IDENTIFICATION, AND CONTROL, February 6-8, Lanzarote, Canary Islands, Spain.
- Jiang, Y., and Ma, J. (2011). Higher order finite element methods for time fractional partial differential equations. J Comput Appl Math, 235, 3285-3290.10.1016/j.cam.2011.01.011
- Kilbas, A. A. A., Srivastava, H. M., and Trujillo J. J. (2006). Theory and applications of fractional differential equations. (Vol. 204). Elsevier Science Limited.
- Liu, J., and Hou, G. (2011). Numerical solutions of the space and time fractional coupled Burgers equation by generalized differential transform method. Appl Math Comput, 217, 7001-7008.10.1016/j.amc.2011.01.111
- Momani, S., and Odibat, Z. (2007). Numerical approach to differential equations of fractional orders. J Comput Appl Math, 207, 96-110.10.1016/j.cam.2006.07.015
- Meerschaert, M., and Tadjeran, C. (2006). Finite difference approximations for two sided space fractional partial differential equations. Appl Numer Math, 56, 80-90.10.1016/j.apnum.2005.02.008
- Nemati, A., and Yousefi, S.A. (2016). A Numerical Method for Solving Fractional Optimal Control Problems Using Ritz Method. Journal of Computational and Nonlinear Dynamics, 11, 051015-1-051015-7.10.1115/1.4032694
- Nigmatullin, R. R., and Nelson, S.O. (2006). Recognition of the fractional kinetics in complex systems: Dielectric properties of fresh fruits and vegetables form 0.01 to1.8 GHz. Signal Processing, 86, 2744-2759.10.1016/j.sigpro.2006.02.018
- Odibat, Z., and Momani, S. (2008). Numerical methods for nonlinear partial differential equations of fractional order. Appl Math Model, 32, 28-39.10.1016/j.apm.2006.10.025
- Odibat, Z., Momani, S., and Erturk, V. S. (2008). Generalized differential transform method: application to differential equations of fractional order. Appl Math Comput, 197,467-477.10.1016/j.amc.2007.07.068
- Pandey, R. K., Singh, O. P., and Baranwal, V. K. (2011). An analytic algorithm for the space-time fractional advectionedispersion equation. Comput Phys Commun, 182, 1134-44.10.1016/j.cpc.2011.01.015
- Petrovic, L. M., Spasic, D. T., and Atanackovic, T. M. (2005). On a mathematical model of a human root dentin. Dental Materials, 21, 125-128.10.1016/j.dental.2004.01.004
- Ray, S. S., and Bera, R. K. (2005). Analytical solution of BagleyeTorvik equation by Adomian decomposition method. Appl Math Comput, 168, 398-410.
- Saadatmandi, A., and Dehghan, M. (2010). A new operational matrix for solving fractional order differential equations. Comput Math Appl, 59, 1326-36.10.1016/j.camwa.2009.07.006
- Surez, J. I., Vinagre, B. M., and Chen, Y. (2008). A fractional adaptation scheme for lateral control of an AGV. Journal of Vibration and Control, 14, 1499-1511.10.1177/1077546307087434
- Samko, S. G., Kilbas, A. A., and Marichev O. I. (1993). Fractional integrals and derivatives. Theory and Applications, Gordon and Breach, Yverdon.
- Wazwaz, A. M., and El-Sayed, S. M. (2001). A new modification of the Adomian decomposition method for linear and nonlinear operators. Applied Mathematics and Computation, 122, 393-405.10.1016/S0096-3003(00)00060-6
- Zamani, M., Karimi-Ghartemani, M., and Sadati, N. (2007). FOPID controller design for robust performance using particle swarm optimization. Fractional Calculus and Applied Analysis, 10, 169-187.