Have a personal or library account? Click to login
Estimating the parameters of lifetime distributions under progressively Type-II censoring from fuzzy data Cover

Estimating the parameters of lifetime distributions under progressively Type-II censoring from fuzzy data

Open Access
|Jun 2016

References

  1. Balakrishnan, N., and Aggarwala, R. (2000), Progressive Censoring: Theory, Methods and Applications. Birkhauser, Boston.10.1007/978-1-4612-1334-5
  2. Balakrishnan, N., and Asgharzadeh, A. (2005). Inference for the scaled half-logistic distribution based on progressively Type II censored samples. Communications in Statistics-Theory and Methods, 34, 73-87.10.1081/STA-200045814
  3. Balakrishnan, N., and Kannan, N. (2000). Point and interval estimation for the parameters of the logistic distribution based on progressively Type-II censored samples. In N. Balakrishnan, and C. R. Rao (Eds.), Handbook of statistics: Vol. 20 (pp. 431-456).
  4. Balakrishnan, N., Kannan, N., Lin, C. T., and Ng, H. K. T. (2003). Point and interval estimation for the normal distribution based on progressively Type-II censored samples. IEEE Transactions on Reliability, 52, 90-95.10.1109/TR.2002.805786
  5. Balakrishnan, N. and Sandhu, R. A. (1995). A simple algorithm for generating progressively Type-II censored samples. The American Statistician, 49(2), 229-230.
  6. Cohen, A. C. (1963). Progressively censored samples in life testing. Tecnometrics, Volume 5, 327-329.10.1080/00401706.1963.10490102
  7. Coppi, R., Gil, M.A. and Kiers, H.A.L., (2006). The fuzzy approach to statistical analysis. Computational Statistics and Data Analysis, 51(1), 114.10.1016/j.csda.2006.05.012
  8. Denoeux, T. (2011). Maximum likelihood estimation from fuzzy data using the EM algorithm, Fuzzy Sets and Systems. 183(1), 72-91.
  9. Dempster, A.P., Laird, N.M., and Rubin, D.B., (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39, 1-38.
  10. Dubois, D. and Prade, H.(1980). Fuzzy Sets and Systems: Theory and Applications. Academic Press, New York.
  11. Dyer, D. D. and Whisenand, C. W. (1973). Best linear estimator of the parameter of the Rayleigh distribution-Part I: Small sample theory for censored order statistics. IEEE Transactions on Reliability, 22, 27-34.10.1109/TR.1973.5216019
  12. Gebhardt, J., Gil M.A. and Kruse R., (1998). Fuzzy set-theoretic methods in statistics, in: R. Slowinski(Ed.), Fuzzy Sets in Decision Analysis, Operations Research and Statistics, Kluwer Academic Publishers, Boston, pp.311-347.10.1007/978-1-4615-5645-9_10
  13. Huang, H., Zuo, M. and Sun, Z., (2006). Bayesian reliability analysis for fuzzy lifetime data. Fuzzy Sets and Systems, 157, 16741686.10.1016/j.fss.2005.11.009
  14. Kim C. and Han K. (2009). Estimation of the scale parameter of the Rayleigh distribution under general progressive censoring, Journal of the Korean Statistical Society, 38, 239-246.10.1016/j.jkss.2008.10.005
  15. Mann, N. R. (1971). Best linear invariant estimator for Weibull parameters under progressive censoring. Technometrics, 13, 521-533.10.1080/00401706.1971.10488815
  16. Pak, A., Parham, G.H. and Saraj, M., (2013). On estimation of Rayleigh scale parameter under doubly Type-II censoring from imprecise data. Journal of Data Science, 11, 303-320.
  17. Pak, A., Parham, G.H. and Saraj, M., (2014). Inferences on the Competing Risk Reliability Problem for Exponential Distribution Based on Fuzzy Data. IEEE Transactions on reliability, 63(1), 2-13.10.1109/TR.2014.2298812
  18. Polovko, A. M. (1968), Fundamentals of Reliability Theory. New York: Academic Press.
  19. Pradhan B., and Kundu D. (2009). On progressively censored generalized exponential distribution, Test, 18, 497-515.10.1007/s11749-008-0110-1
  20. Raqab, M. Z. and Madi, M. T. (2002). Bayesian prediction of the total time on test using doubly censored Rayleigh data. Journal of Statistical Computation and Simulation, 72, 781-789.10.1080/00949650214670
  21. Singpurwalla, N.D. and Booker, J.M. (2004). Membership functions and probability measures of fuzzy sets. Journal of the American Statistical Association, 99(467), 867877.10.1198/016214504000001196
  22. Thomas D. R., Wilson W. M. (1972) Linear order statistic estimation for the two-parameter Weibull and extreme value distributions from Type-II progressively censored samples., Technometrics, 14, 679-691.10.1080/00401706.1972.10488957
  23. Viveros, R., and Balakrishnan, N. (1994). Interval estimation of life characteristics from progressively censored data. Technometrics, 36, 84-91.10.1080/00401706.1994.10485403
  24. Zadeh, L. A. (1968). Probability measures of fuzzy events, Journal of Mathematical Analysis and Applications10, 421-427.10.1016/0022-247X(68)90078-4
  25. Zimmermann, H. J. (1991). Fuzzy set teory and its application, Kluwer, Dordrecht.10.1007/978-94-015-7949-0
DOI: https://doi.org/10.1515/jamsi-2016-0004 | Journal eISSN: 1339-0015 | Journal ISSN: 1336-9180
Language: English
Page range: 41 - 53
Published on: Jun 11, 2016
Published by: University of Ss. Cyril and Methodius in Trnava
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2016 N. B. Khoolenjani, O. Chatrabgoun, published by University of Ss. Cyril and Methodius in Trnava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.