Have a personal or library account? Click to login
Bi-Objective Bilevel Programming Problem: A Fuzzy Approach Cover
By: S. Haseen and  A. Bari  
Open Access
|Dec 2015

References

  1. T. Allahviranloo, F. H. Lofti, M. K. Kiasary, N.A. Kiani, and L. Alizadeh. Solving fully fuzzy linear programming problem by the ranking function. Applied Mathematical Sciences, 2(1):19–32, 2008.10.12988/ijcms.2007.07010
  2. G. Anandalingam. A mathematical programming model of decentralized multi-level systems. Journal of Operational Research Society, 39:1021âĂŞ1033, 1988.10.1057/jors.1988.172
  3. J.F. Bard. A grid search algorithm for the linear bilevel programming problem. 14-th Annual Meeting of American Institude for Decision Science, San Francisco, CA.2:256–258, 1982.
  4. W. Bialas, M.H. Karwan, and J Shaw. A parametric complementary pivot approach for two-level linear programming. Technical Report, State University of New York at Buffalo, Operations Research, 80-2, 1980.
  5. M. P. Biswal and S. Acharya. Transformation of a multi-choice linear programming problem. Applied Mathematics and Computation, 210:182–188, 2009.10.1016/j.amc.2008.12.080
  6. M. P. Biswal and S. Acharya. Solving multi-choice linear programming problems by interpolating polynomials. Mathematical and Computer Modelling, 54:1405–1412, 2011.10.1016/j.mcm.2011.04.009
  7. C. T. Chang. Multi-choice goal programming. Omega, 35(4):389–396, 2007.10.1016/j.omega.2005.07.009
  8. O.E. Emam. A fuzzy approach for bi-level integer non-linear programming problem. Applied Mathematics and Computation, 172:62âĂŞ71, 2006.10.1016/j.amc.2005.01.149
  9. R. Ezzati, E. Khorram, and R. Enayati. A algorithm to solve fully fuzzy linear programming problems using the molp problem. Applied Mathematical Modelling, In Press, 2013.
  10. K. Ganesan and P. Veeramani. Fuzzy linear programs with trapezoidal fuzzy numbers. Annals of Operations Research, 143:305–315, 2006.10.1007/s10479-006-7390-1
  11. W. C. Healy. Multiple choice programming. operations research. International journal of Mathematics and Applied Statistics, 12:122–138, 1964.10.1287/opre.12.1.122
  12. F. Hiller and G. Lieberman. Introduction to operations research. McGraw-Hill, New York, 1990.
  13. Masahiro Inuiguchi and Jaroslav Ramık. Possibilistic linear programming: a brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem. Fuzzy sets and systems, 111(1):3–28, 2000.
  14. B. Liu. Stackelberg-nash equilibrium for multi-level programming with multi-follows using genetic algorithms. Computers math applications, 37,7:79–89, 1998.10.1016/S0898-1221(98)00174-6
  15. J. Lu, C. Shi, and G. Zhang. An extended kth-best approach for linear bilevel programming. Applied Mathematics and Computation, 164:843–855, 2005.10.1016/j.amc.2004.06.047
  16. MK Luhandjula. Multiple objective programming problems with possibilistic coefficients. Fuzzy Sets and Systems, 21(2):135–145, 1987.10.1016/0165-0114(87)90159-X
  17. R. Mathieu, L. Pittard, and G. Anandalingam. Genetic algorithm based approach to bilevel linear ptogramming. R. A. I. R. O Researche operationelle, 28:1–21, 1994.10.1051/ro/1994280100011
  18. Heinrich Rommelfanger. Fuzzy linear programming and applications. European journal of operational research, 92(3):512–527, 1996.10.1016/0377-2217(95)00008-9
  19. Heinrich Rommelfanger. The advantages of fuzzy optimization models in practical use. Fuzzy Optimization and Decision Making, 3(4):295–309, 2004.10.1007/s10700-004-4200-6
  20. M Sakawa. Interactive fuzzy goal programming for multiobjective nonlinear problems and its application to water quality management. Control and Cybernetics, 13(2):217–228, 1984.
  21. M. Sakawa. Fuzzy sets and interactive multi-objective optimization. Plenum Press, New York, 1993a.10.1007/978-1-4899-1633-4
  22. Masatoshi Sakawa. Fuzzy sets and interactive multiobjective optimization. Plenum New York, 1993b.10.1007/978-1-4899-1633-4
  23. Fumiko Seo and Masatoshi Sakawa. Multiple criteria decision analysis in regional planning: concepts, methods and applications. Reidel Dordrecht, The Netherlands, 1988.
  24. C. Shi, J. Lu, and G. Zhang. An extended kuhn-tucker approach for linear bilevel programming. Applied Mathematics and Computation, 162:51–63, 2005.10.1016/j.amc.2003.12.089
  25. Roman Slowinski and Jacques Teghem. Stochastic vs. fuzzy approaches to multiobjective mathematical programming under uncertainty. Kluwer Academic Publishers, 1990.10.1007/978-94-009-2111-5
  26. Behzad Bankian Tabrizi, Kamran Shahanaghi, and M. Saeed Jabalameli. Fuzzy multi-choice goal programming. Applied Mathematical Modelling, 36:1415–1420, 2012.10.1016/j.apm.2011.08.040
  27. Jea Teghem Jr, D Dufrane, M Thauvoye, and P Kunsch. Strange: an interactive method for multi-objective linear programming under uncertainty. European Journal of Operational Research, 26(1):65–82, 1986.
  28. W.F. Bialas U.P. Wen. The hybrid algorithm for solving the three-level linear programming problem. Computers and Operations Research, 13:367âĂŞ377, 1986.10.1016/0305-0548(86)90023-7
  29. H-J Zimmermann. Fuzzy programming and linear programming with several objective functions. Fuzzy sets and systems, 1(1):45–55, 1978.10.1016/0165-0114(78)90031-3
DOI: https://doi.org/10.1515/jamsi-2015-0015 | Journal eISSN: 1339-0015 | Journal ISSN: 1336-9180
Language: English
Page range: 97 - 115
Published on: Dec 30, 2015
Published by: University of Ss. Cyril and Methodius in Trnava
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2015 S. Haseen, A. Bari, published by University of Ss. Cyril and Methodius in Trnava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.