Have a personal or library account? Click to login
On a numerical flux for the pedestrian flow equations* Cover
By: P. Kubera and  J. Felcman  
Open Access
|Dec 2015

References

  1. Bellomo, N. and Dogbé, C. 2008. On the modelling crowd dynamics from scaling to hyperbolic macroscopic models. Mathematical Models and Methods in Applied Sciences 18, 1317 – 1345.
  2. Bornemann, F. and Rasch, C. 2006. Finite-element discretization of static hamilton-jacobi equations based on a local variational principle. Computing and Visualization in Science 9, 2, 57–69.
  3. Dridi, M. H. 2015. Simulation of high density pedestrian flow: Microscopic model. Open Journal of Modelling and Simulation 3, 1, 81 – 95.
  4. Eymard, R., Gallouët, T., and Herbin, R. 2000. Finite volume methods. In Handbook of Numerical Analysis, P. Ciarlet and J. Lions, Eds. Vol. VII. North-Holland, 713–1020.
  5. Feistauer, M., Felcman, J., and Straškraba, I. 2003. Mathematical and computational methods for compressible flow. Clarendon Press.
  6. Felcman, J. and Havle, O. 2011. On a numerical flux for the shallow water equations. Applied Mathematics and Computation 217, 11, 5160 – 5170. Special issue on Fluid Flow and Heat Transfer.10.1016/j.amc.2010.07.047
  7. Felcman, J. and Kubera, P. 2015. Modeling pedestrian flow via shallow water equations. (in preparation).
  8. Furmanek, P., Furst, J., and Kozel, K. 2009. High order finite volume schemes for numerical solution of 2D and 3D transonic flows. KYBERNETIKA 45, 4, 567–579.
  9. Gallouët, T., Hérard, J.-M., and Seguin, N. 2003. Some approximate godunov schemes to compute shallow-water equations with topography. Comput. Fluids 32, 4, 479–513.
  10. Helbing, D., Farkas, I. J., Molnár, P., and Vicsek, T. 2002. Simulation of pedestrian crowd in normal and evacuation situations. Pedestrian and Evacuation Dynamics Journal, 21 – 58.
  11. Marno, P. 2002. Crowded - macroscopic and microscopic models for pedestrian dynamics. Ph.D. thesis, University of Reading.
  12. Toro, E. F. 1997. Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, Berlin.10.1007/978-3-662-03490-3
  13. Twarogowska, M., Goatin, P., and Duvigneau, R. 2013. Numerical study of macroscopic pedestrian flow models. Tech. rep.10.1016/j.trpro.2014.09.063
  14. Vijayasundaram, G. 1982. Resolution numérique des équations d’euler pour des écoulements transsoniques avec un schéma de godunov en éléments finis. Ph.D. thesis, Paris IV.
DOI: https://doi.org/10.1515/jamsi-2015-0014 | Journal eISSN: 1339-0015 | Journal ISSN: 1336-9180
Language: English
Page range: 79 - 96
Published on: Dec 30, 2015
Published by: University of Ss. Cyril and Methodius in Trnava
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year
Keywords:

© 2015 P. Kubera, J. Felcman, published by University of Ss. Cyril and Methodius in Trnava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.