Have a personal or library account? Click to login
Numerical solutions of the generalized Burgers-Huxley equation by implicit exponential finite difference method Cover

Numerical solutions of the generalized Burgers-Huxley equation by implicit exponential finite difference method

By: B. İnan and  A. R. Bahadir  
Open Access
|Dec 2015

References

  1. [1] X. Y. Wang, Z. S. Zhu, Y. K. Lu, Solitary wave solutions of the generalized Burgers-Huxley equation, J. Phys. A: Math. Gen. 23 (1990) 271-274.10.1088/0305-4470/23/3/011
  2. [2] H. N. A. Ismail, K. Raslan, A. A. Abd-Rabboh, Adomian decomposition method for Burgers-Huxley and Burgers-Fisher equations, Appl. Math. Comput. 159 (2004) 291-301.
  3. [3] I. Hashim, M. S. M. Noorani, M. R. Said Al-Hadidi, Solving the generalized Burgers-Huxley Equation using the Adomian decomposition method, Math. Comput. Model. 43 (2006) 1404-1411.10.1016/j.mcm.2005.08.017
  4. [4] M. Javidi, A numerical solution of the generalized Burger’s-Huxley equation by pseudospectral method and Darvishi’s preconditioning, Appl. Math. Comput. 175 (2006) 1619-1628.
  5. [5] M. Javidi, A numerical solution of the generalized Burger’s-Huxley equation by spectral collocation method, Appl. Math. Comput. 178 (2006) 338-344.
  6. [6] M. T. Darvishi, S. Kheybari, F. Khani, Spectral collocation method and Darvishi’s preconditionings to solve the generalized Burgers-Huxley equation, Commun. Nonlinear Sci. Numer. Simul. 13 (2008) 2091-2103.10.1016/j.cnsns.2007.05.023
  7. [7] B. Batiha, M. S. M. Noorani, I. Hashim, Application of variational iteration method to the generalized Burgers-Huxley equation, Chaos Soliton Fract. 36 (2008) 660-663.10.1016/j.chaos.2006.06.080
  8. [8] M. Sari, G. Gürarslan, Numerical solutions of the generalized Burgers-Huxley equation by a differential quadrature method, Math. Probl. Eng. 2009, doi: 10.1155/2009/370765.10.1155/2009/370765
  9. [9] A. J. Khattak, A computational meshless method for the generalized Burger’s-Huxley equation, Appl. Math. Model. 33 (2009) 3218-3729.10.1016/j.apm.2008.12.010
  10. [10] M. Javidi, A. Golbabai, A new domain decomposition algorithm for generalized Burger’s-Huxley equation based on Chebyshev polynomials and preconditioning, Chaos Soliton Fract. 39 (2009) 849-857.10.1016/j.chaos.2007.01.099
  11. [11] J. Biazar, F. Mohammadi, Application of differential transform method to the generalized Burgers-Huxley equation, Appl. Appl. Math. 5 (2010) 1726-1740.
  12. [12] A. G. Bratsos, A fourth order improved numerical scheme for the generalized Burgers-Huxley equation, American J. Comput. Math. 1 (2011) 152-158.10.4236/ajcm.2011.13017
  13. [13] M. Dehghan, B. N. Saray, M. Lakestani, Three methods based on the interpolation scaling functions and the mixed collocation finite difference schemes for the numerical solution of the nonlinear generalized Burgers-Huxley equation, Math. Computer Model. 55 (2012) 1129-1142.10.1016/j.mcm.2011.09.037
  14. [14] İ. Çelik, Haar wavelet method for solving generalized Burgers-Huxley equation, Arab J. Math. Sci. 18 (2012) 25-37.
  15. [15] M. El-Kady, S. M. El-Sayed, H. E. Fathy, Development of Galerkin method for solving the generalized Burger’s Huxley equation, Math. Probl. Eng. 2013, doi: 10.1155/2013/165492.10.1155/2013/165492
  16. [16] A. M. Al-Rozbayani, Discrete Adomian decomposition method for solving Burger’s-Huxley Equation, Int. J. Contemp. Math. Sci. 8 (2013) 623-631.10.12988/ijcms.2013.3570
  17. [17] R. C. Mittal, A. Tripathi, Numerical solutions of generalized Burgers-Fisher and generalized Burgers–Huxley equations using collocation of cubic B-splines, Int. J. Comput. Math. 5 (2015) 1053–1077.10.1080/00207160.2014.920834
  18. [18] İ. Çelik, Chebyshev Wavelet collocation method for solving generalized Burgers-Huxley equation, Math. Meth. Appl. Sci. 2015, doi: 10.1002/mma.348710.1002/mma.3487
  19. [19] M. C. Bhattacharya, An explicit conditionally stable finite difference equation for heat conduction problems, Int. J. Num. Meth. Eng. 21 (1985) 239-265.10.1002/nme.1620210205
  20. [20] M. C. Bhattacharya, Finite difference solutions of partial differential equations, Commun. Appl. Numer. Meth. 6 (1990) 173-184.10.1002/cnm.1630060303
  21. [21] R. F. Handschuh, T. G. Keith, Applications of an exponential finite-difference technique, Numer. Heat Transfer. 22 (1992) 363-378.10.1080/10407789208944773
  22. [22] A. R. Bahadır, Exponential finite-difference method applied to Korteweg-de Vries equation for small times, Appl. Math. Comput. 160 (2005) 675-682.
  23. [23] B. Inan, A. R. Bahadir, Numerical solution of the one-dimensional Burgers equation: Implicit and fully implicit exponential finite difference methods, Pramana J. Phys. 81 (2013) 547-556.
DOI: https://doi.org/10.1515/jamsi-2015-0012 | Journal eISSN: 1339-0015 | Journal ISSN: 1336-9180
Language: English
Page range: 57 - 67
Published on: Dec 30, 2015
Published by: University of Ss. Cyril and Methodius in Trnava
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year
Keywords:

© 2015 B. İnan, A. R. Bahadir, published by University of Ss. Cyril and Methodius in Trnava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.