Have a personal or library account? Click to login
A Class of Modified Ratio Estimators for Estimation of Population Variance Cover

A Class of Modified Ratio Estimators for Estimation of Population Variance

Open Access
|Jun 2015

References

  1. [1] AGARWAL, M.C. and SITHAPIT, A.B. 1995. Unbiased ratio type estimation. Statistics and Probability Letters, 25: 361-36410.1016/0167-7152(94)00242-7
  2. [2] AHMED, M.S., RAMAN, M.S. and HOSSAIN, M.I. 2000. Some competitive estimators of finite population variance multivariate auxiliary information. Information and Management Sciences, 11 (1): 49-54
  3. [3] AL-JARARHA, J. and AL-HAJ EBRAHEM, M. 2012. A ratio estimator under general sampling design. Austrian Journal of Statistics, 41(2): 105-115
  4. [4] ARCOS, A., RUEDA, M., MARTINEZ, M.D., GONZALEZ, S. and ROMAN, Y. 2005. Incorporating the auxiliary information available in variance estimation. Applied Mathematics and Computation, 160: 387-39910.1016/j.amc.2003.11.010
  5. [5] COCHRAN, W. G. 1977: Sampling techniques, Third Edition, Wiley Eastern Limited
  6. [6] DAS, A.K. and TRIPATHI, T.P. 1978. Use of auxiliary information in estimating the finite population variance. Sankhya, 40: 139-148
  7. [7] GARCIA, M.K. and CEBRAIN, A.A. 1997. Variance estimation using auxiliary information: An almost unbiased multivariate ratio estimator. Metrika, 45: 171-17810.1007/BF02717100
  8. [8] GUPTA, S. and SHABBIR, J. 2008. Variance estimation in simple random sampling using auxiliary information. Hacettepe Journal of Mathematics and Statistics, 37: 57-67
  9. [9] ISAKI, C.T. 1983. Variance estimation using auxiliary information. Journal of the American Statistical Association, 78: 117-12310.1080/01621459.1983.10477939
  10. [10] KADILAR, C. and CINGI, H. 2006a. Improvement in variance estimation using auxiliary information. Hacettepe Journal of Mathematics and Statistics, 35 (1): 111-115
  11. [11] KADILAR, C. and CINGI, H. 2006b. Ratio estimators for population variance in simple and stratified sampling. Applied Mathematics and Computation, 173: 1047-105810.1016/j.amc.2005.04.032
  12. [12] MURTHY, M.N. 1967. Sampling theory and methods. Statistical Publishing Society, Calcutta, India
  13. [13] PRASAD, B. and SINGH, H.P. 1990. Some improved ratio type estimators of finite population variance in sample surveys. Communication in Statistics: Theory and Methods, 19: 1127-113910.1080/03610929008830251
  14. [14] REDDY, V.N. 1974. On a transformed ratio method of estimation, Sankhya C, 36: 59-70
  15. [15] SHABBIR, J. and GUPTA, S. 2006. On estimation of finite population variance. Journal of Interdisciplinary Mathematics, 9(2), 405-41910.1080/09720502.2006.10700453
  16. [16] SINGH, D. and CHAUDHARY, F.S. 1986. Theory and analysis of sample survey designs. New Age International Publisher
  17. [17] SINGH, H.P. and SOLANKI, R.S. 2013. A new procedure for variance estimation in simple random sampling using auxiliary information. Statistical Papers, 54, 479-49710.1007/s00362-012-0445-2
  18. [18] SINGH, H.P., UPADHYAYA, U.D. and NAMJOSHI, U.D. 1988. Estimation of finite population variance. Current Science, 57: 1331-1334
  19. [19] SISODIA, B.V.S. and DWIVEDI, V.K. 1981. A modified ratio estimator using coefficient of variation of auxiliary variable. Journal of the Indian Society of Agricultural Statistics, 33(1): 13-18
  20. [20] SUBRAMANI, J. and KUMARAPANDIYAN, G. 2012a. Variance estimation using median of the auxiliary variable. International Journal of Probability and Statistics, Vol. 1(3), 36-4010.5923/j.ijps.20120103.02
  21. [21] SUBRAMANI, J. and KUMARAPANDIYAN, G. 2012b. Variance estimation using quartiles and their functions of an auxiliary variable, International Journal of Statistics and Applications, 2012, Vol. 2(5), 67-4210.5923/j.statistics.20120205.04
  22. [22] SUBRAMANI, J. and KUMARAPANDIYAN, G. 2012c. Estimation of variance using deciles of an auxiliary variable. Proceedings of International Conference on Frontiers of Statistics and Its Applications, Bonfring Publisher, 143-149
  23. [23] SUBRAMANI, J. and KUMARAPANDIYAN, G. 2013. Estimation of variance using known coefficient of variation and median of an auxiliary variable. Journal of Modern Applied Statistical Methods, Vol. 12(1), 58-6410.22237/jmasm/1367381400
  24. [24] TAILOR, R. and SHARMA, B. 2012. Modified estimators of population variance in presence of auxiliary information. Statistics in Transition-New series, 13(1), 37-46
  25. [25] UPADHYAYA, L. N. and SINGH, H.P. 2006. Almost unbiased ratio and product-type estimators of finite population variance in sample surveys. Statistics in Transition, 7 (5): 1087-1096
  26. [26] UPADHYAYA, L.N. and SINGH, H.P. 1999. An estimator for population variance that utilizes the kurtosis of an auxiliary variable in sample surveys. Vikram Mathematical Journal, 19, 14-17
  27. [27] UPADHYAYA, L.N. and SINGH, H.P. 2001. Estimation of population standard deviation using auxiliary information. American Journal of Mathematics and Management Sciences, 21(3-4), 345-35810.1080/01966324.2001.10737565
  28. [28] WOLTER, K.M. 1985. Introduction to Variance Estimation. Springer-Verlag
  29. [29] YADAV, S.K. and KADILAR, C. 2013a. A class of ratio-cum-dual to ratio estimator of population variance. Journal of Reliability and Statistical Studies, 6(1), 29-3410.15415/mjis.2013.12016
  30. [30] YADAV, S.K. and KADILAR, C. 2013b. Improved Exponential type ratio estimator of population variance. Colombian Journal of Statistics, 36(1), 145-152
DOI: https://doi.org/10.1515/jamsi-2015-0006 | Journal eISSN: 1339-0015 | Journal ISSN: 1336-9180
Language: English
Page range: 91 - 114
Published on: Jun 27, 2015
Published by: University of Ss. Cyril and Methodius in Trnava
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2015 J. Subramani, G. Kumarapandiyan, published by University of Ss. Cyril and Methodius in Trnava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.