Have a personal or library account? Click to login
Homotopy perturbation method for Ozone decomposition of the second order in aqueous solutions Cover

Homotopy perturbation method for Ozone decomposition of the second order in aqueous solutions

By: Z. Ayati,  J. Biazar and  M. Partovi  
Open Access
|Jun 2015

References

  1. [1] S.T.Summer felt, J.A. Hankins, A.L. Weber, M.D. Durant, Ozone ion of a re-circulating rainbow trout culture system. II. Effects on micro screen filtration and water quality, Aquaculture 158 (1997) 57-67.10.1016/S0044-8486(97)00064-1
  2. [2] G.L. Lucchetti, G.A. Gray, Water reuses systems, a review of principal components, Prog. Fish Culturist. 50 (1988) 1-6.10.1577/1548-8640(1988)050<;0001:WRSARO>2.3.CO;2
  3. [3] J. Biazar, M. Tango, R. Islam, Ozone decomposition of the second order in aqueous solutions, Applied Mathematics and Computation 177 (2006) 220-225.10.1016/j.amc.2005.11.001
  4. [4] J. Biazar, H. Ghazvini Exact solutions for nonlinear Schrödinger equations by He’s homotopy perturbation method Physics Letters A 366 (2007), 79-84.
  5. [5] SJ. Liao, An approximate solution technique not depending on small parameter: a special example.In J Nonlinear Mech 1995:30(3):371-80.10.1016/0020-7462(94)00054-E
  6. [6] SJ. Liao, Boundary element method for general nonlinear differential operators. Eng Anal Boundary Element 1997; 20(2):91-9.10.1016/S0955-7997(97)00043-X
  7. [7] J.H. He, The homotopy perturbation method for nonlinear oscillators with discontinuities, Applied Mathematics and Computation 151 (2004) 287-292.10.1016/S0096-3003(03)00341-2
  8. [8] J. Biazar, M. Eslami, H. Ghazvini, Homotopy perturbation method for systems of partial differential equations, International Journal of Nonlinear Science and Numerical Simulation 8 (3) (2007) 411-416.10.1515/IJNSNS.2007.8.3.413
  9. [9] J.H. He, Comparison of homotopy perturbation method and homotopy analysis method, Applied Mathematics and Computation 156 (2004) 527-539.10.1016/j.amc.2003.08.008
  10. [10] J.H. He, Asymptology by homotopy perturbation method, Applied Mathematics and Computation 156 (3) (2004) 591-596.10.1016/j.amc.2003.08.011
  11. [11] J.H. He, Homotopy perturbation method for bifurcation of nonlinear problems, International Journal of Nonlinear Science Numerical Simulation 6 (2) (2005) 207-208.10.1515/IJNSNS.2005.6.2.207
  12. [12] J.H. He, Homotopy perturbation method for solving boundary value problems, Physics Letters A 350 (1-2) (2006) 87-88.10.1016/j.physleta.2005.10.005
  13. [13] J.H. He, Homotopy perturbation technique, Computer methods in applied mechanics and engineering 178 (1999) 257-262. 10.1016/S0045-7825(99)00018-3
DOI: https://doi.org/10.1515/jamsi-2015-0004 | Journal eISSN: 1339-0015 | Journal ISSN: 1336-9180
Language: English
Page range: 63 - 72
Published on: Jun 27, 2015
Published by: University of Ss. Cyril and Methodius in Trnava
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2015 Z. Ayati, J. Biazar, M. Partovi, published by University of Ss. Cyril and Methodius in Trnava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.