Have a personal or library account? Click to login
New fractional calculus results involving Srivastava’s general class of multivariable polynomials and The H̅ - function Cover

New fractional calculus results involving Srivastava’s general class of multivariable polynomials and The H̅ - function

Open Access
|Jun 2015

References

  1. 1. Buschman,R.G. and Srivastava, H.M., The H̅ -function associated with a certain class of Feynman integral. J. Phys. A: Math. Gen. 23, (1990), 4707-4710.10.1088/0305-4470/23/20/030
  2. 2. Chaurasia, V.B.L. and Kumar, D., A family of fractional integrals pertaining to multivariable I-function, Applied Mathematical Sciences 4 (31) (2010), 1535-1545.
  3. 3. Erdélyi, A., Magnus, W.,Oberthettinger,F. and Tricomi, F.G., Higher Transcendental Functions, Vol.I, McGraw-Hill Book Company, New York, Toronto, London, 1953.
  4. 4. Fox, C. The G and H-functions as symmetrical Fourier kernels, Trans. Amer. Math. Soc., 98 (1961), 395-429.
  5. 5. Garg, M. and Misra, R., On product of Hypergeometric Functions, General Class of Multivariable Polynomials and a Generalized Hypergeometric Series Associated with Feynmann integrals, Bull. Cal. Math. Soc., 95, No.4 (2003), 313-324.
  6. 6. Gupta, K.C. and Soni, R.C., On a basic integral formula involving the product of the H̅ -function and Fox H -function, J. Raj. Acad. Phys. Sci. 4(3)(2005), 157-164.
  7. 7. Inayat Hussain, A.A., New Properties of Hypergeometric series derivable from Feynmann integrals II, A generalization of the H-function, J. Phys. A. Math. Gen., 20 (1987), 4119-4128.10.1088/0305-4470/20/13/020
  8. 8. Kilbas, A.A. and Saigo, M., H-Transforms: Theory and Applications, Chapman and Hall/CRC, New York,2004.
  9. 9. Kilbas, A.A., Srivastava, H.M. and Trujillo, J.J., Theory and Applications of Fractional Differential Equations, Amsterdam, Netherlands: Elsevier, 2006.
  10. 10. Misra, A.P., On fractional differential operator, Ganita, 26, No.2 (1975), 1-18.
  11. 11. Raizada, S.K., A study of unified representation of special functions, Mathematical physics and their use in statistical and boundary value problem, Ph.D. Thesis, Bundelkhand University, Jhansi, India, 1991.
  12. 12. Rathie, A.K., A new generalization of generalized hypergeometric function, Le Mathematiche Fase II, 52 (1999), 297-310.
  13. 13. Srivastava, H.M. and Garg, M., Some integrals involving a general class of polynomials and the multivariable H-function, Rev. Roumaine Phys., 32 (1987), 685-692.
  14. 14. Srivastava, H.M., Gupta, K.C. and Goyal, S.P., The H-Functions of One and Two Variables with Applications, South Asian Publishers, New Delhi - Madras, 1982.
  15. 15. Srivastava, H.M., A multilinear generating function for the Konhauser sets of biorthogonal polynomials suggested by the Laguerre polynomials, Pacific J. Math. 117 (1985), 183-191.10.2140/pjm.1985.117.183
  16. 16. Srivastava, H.M., A contour integral involving Fox’s H -function, Indian J. Math., 14(1972), 1-6.
DOI: https://doi.org/10.1515/jamsi-2015-0002 | Journal eISSN: 1339-0015 | Journal ISSN: 1336-9180
Language: English
Page range: 19 - 32
Published on: Jun 27, 2015
Published by: University of Ss. Cyril and Methodius in Trnava
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2015 V. B. L. Chaurasia, Vinod Gill, published by University of Ss. Cyril and Methodius in Trnava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.