Have a personal or library account? Click to login
The Least Eigenvalue of the Graphs Whose Complements Are Connected and Have Pendent Paths Cover

The Least Eigenvalue of the Graphs Whose Complements Are Connected and Have Pendent Paths

By: Chen Wang,  Guidong Yu,  Wei Sun and  Jinde Cao  
Open Access
|May 2018

References

  1. [1] F. Bell, D. Cvetković, P. Rowlinson, S. Simić, Graph for which the least eigenvalues is minimal, I. Linear Algebra Appl., 429, 2008, 234-241.10.1016/j.laa.2008.02.032
  2. [2] F. Bell, D. Cvetković, P. Rowlinson, S. Simić, Graph for which the least eigenvalues is minimal, II. Linear Algebra Appl., 429, 2008, 2168-2176.10.1016/j.laa.2008.06.018
  3. [3] D. Cardoso, D. Cvetković, P. Rowlinson, S. Simić. A sharp lower bound for the least eigenvalue of the signless Laplacian of a non-bipartite graph, Linear Algebra Appl., 429, 2008, 2770-2780.10.1016/j.laa.2008.05.017
  4. [4] Y. Fan, Y. Wang, Y. Gao, Minimizing the least eigenvalues of unicyclic graphs with application to spectralspread, Linear Algebra Appl., 429, 2008, 577-588.10.1016/j.laa.2008.03.012
  5. [5] Y. Fan, F. Zhang, Y. Wang, The least eigenvalue of the complements of tree, Linear Algebra Appl., 435, 2011, 2150-2155.10.1016/j.laa.2011.04.011
  6. [6] W. Haemers, Interlacing eigenvalues and graphs, Linear Algebra Appl., 227-228, 1995, 593-616.10.1016/0024-3795(95)00199-2
  7. [7] S. Li, S. Wang, The least eigenvalue of the signless Laplacian of the complements of trees, Linear Algebra Appl., 436, 2012, 2398-2405.10.1016/j.laa.2011.09.032
  8. [8] R. Liu, M. Zhai, J. Shu Th,e least eigenvalues of unicyclic graph with n vertices and k pendant vertices. Linear Algebra Appl., 431, 2009, 657-665.10.1016/j.laa.2009.03.016
  9. [9] M. Petrović, B. Borovićanin, T. Aleksić, Bicyclic graphs for which the least eigenvalue is minimum. Linear Algebra Appl., 430, 2009, 1328-1335.10.1016/j.laa.2008.10.026
  10. [10] Y. Tan, Y. Fan, The vertex(edge) independence number, vertex(edge) cover number and the least eigenvalue of a graph, Linear Algebra Appl., 433, 2010, 790-795.10.1016/j.laa.2010.04.009
  11. [11] Y. Wang, Y. Fan, The least eigenvalue of a graph with cut vertices. Linear Algebra Appl., 433, 2010, 19-27.10.1016/j.laa.2010.01.030
  12. [12] Y. Wang, Y. Fan, X. Li, et al. The least eigenvalue of graphs whose complements are unicyclic, Discussiones Mathematicae Graph Theory, 35(2), 2013, 1375-1379.
  13. [13] M. Ye, Y. Fan, D. Liang. The least eigenvalue of graphs with given connectivity. Linear Algebra Appl., 430, 2009, 1375-1379.10.1016/j.laa.2008.10.031
  14. [14] G. Yu, Y. Fan, Y.Wang, Quadratic forms on graphs with application to minimizing the least eigenvalue of signless Laplacian over bicyclic graphs, Electronic J. Linear Algebra, 27, 2014, 213-236.10.13001/1081-3810.1614
  15. [15] G. Yu, Y. Fan. The least eigenvalue of graphs. Math. Res. Expo., 32(6), 2012, 659-665.
  16. [16] G.Yu, Y.Fan, The least eigenvalue of graphs whose complements are 2-vertex or 2-edge connected, Operations Research Transactions, 17(2), 2013, 81-88.
Language: English
Page range: 303 - 308
Submitted on: Jan 27, 2018
Accepted on: Mar 16, 2018
Published on: May 17, 2018
Published by: SAN University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Chen Wang, Guidong Yu, Wei Sun, Jinde Cao, published by SAN University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.