Have a personal or library account? Click to login
On the Topological Properties of the Certain Neural Networks Cover
Open Access
|May 2018

References

  1. [1] J. Cao, R. Li, Fixed-time synchronization of delayed memristor-based recurrent neural networks, Sci. China. Inf. Sci. 60(3) (2017) 032201.10.1007/s11432-016-0555-2
  2. [2] Y. Huo, J. B-Liu, J. Cao, Synchronization analysis of coupled calcium oscillators based on two regular coupling schemes, Neurocomputing 165 (2015) 126-132.10.1016/j.neucom.2015.03.001
  3. [3] Z. Guo, J. Wang, Z. Yan, Attractivity analysis of memristor-based cellular neural networks with time-varying delays, IEEE Trans. Neural Netw. Learn. Syst. 25 (2013) 704-717.10.1109/TNNLS.2013.228055624807948
  4. [4] J. Devillers, A. T. Balaban, Topological Indices and Related Descriptors in QSAR and QSPR, Gordon Breach, Amsterdam 1999.10.1201/9781482296945
  5. [5] M. Karelson, Molecular Descriptors in QSAR/QSPR, Wiley, New York, 2000.
  6. [6] M. Javaid, J. B-Liu, M. A. Rehman, S. H. Wang, On the Certain Topological Indices of Titania Nanotube TiO2[m,n], Zeitschrift f¨ur Naturforschung A 72(7) 2017 647-654.10.1515/zna-2017-0101
  7. [7] M. Imran, S. Hafi, W. Gao, M. R. Farahani, On topological properties of sierpinski networks, Chaos, Solitons and Fractals 98 (2017) 199-204.10.1016/j.chaos.2017.03.036
  8. [8] S. H. Wang, B. Wei, Multiplicative Zagreb indices of k-trees, Discrete Appl. Math. 180 (2015) 168-175.10.1016/j.dam.2014.08.017
  9. [9] M. Javaid, Jinde Cao, Computing topological indices of probabilistic neural network, Neural Comput. Applic. (2017). doi:10.1007/s 00521-017-2972.
  10. [10] W. Gao, M. K. Siddiqui, Molecular descriptors of nanotube, oxide, silicate, and triangulene networks, Journal of Chemistry 2017 (2017).10.1155/2017/6540754
  11. [11] J. B-Liu, S. H.Wang, C.Wang, S. Haya, Further results on computation of topological indices of certain networks, IET Control Theory & Applications 11(13) (2017) 2065-2071. 10.1049/iet-cta.2016.1237
  12. [12] J. A. Bondy, U. S. R. Murty, Graph Theory with Applications, Macmillan, New York, 1976.10.1007/978-1-349-03521-2
  13. [13] H. Wiener, Structural determination of the paraffin boiling points, J. Am. Chem. Soc. 69 (1947) 17-20.10.1021/ja01193a005
  14. [14] O. Ivanciuc, T. S. Balaban, A. T. Balaban, Reciprocal distance matrix, related local vertex invariants and topological indices, J. Math. Chem. 12 (1993) 309-318.10.1007/BF01164642
  15. [15] R. Todeschini, V. Consonni, Molecular descriptors for chemoinformatics, vol I, vol II. Wiley-VCH, Weinheim (2009) 934-938.10.1002/9783527628766
  16. [16] K. Xu, K. C. Das, N. Trinajstic, The Harary Index of a Graph, Springer Briefs in Mathematical Methods, DOI:10.1007/97836624584335.10.1007/97836624584335
  17. [17] I. Gutman, Selected properties of the Schultz molecular topological index, J. Chem. Inf. Comput. Sci. 34 (1994) 1087-1089.10.1021/ci00021a009
  18. [18] H. Narumi, M. Hatayama, Simple topological index. a newly devised index charaterizing the topological nature of structural isomers of saturated hydrocarbons, Mem. Fac. Eng. Hokkaido Univ. 16 (1984) 209-214.
  19. [19] D. J. Klein, V. R. Rosenfeld, The Narumi-Katayama degree-product index and the degreeproduct polynomial, in: I. Gutman, B. Furtula (Eds.), Novel Molecular Structure Descriptors- Theory and Applications II, Univ. Kragujevac, Kragujevac (2010) 79-90.
  20. [20] I. Gutman, Some Properties of the Wiener Polynomials, Graph Theory Notes New York 25 (1993) 13-18.
  21. [21] C. Wang, J.-B.Liu, S. Wang, Sharp upper bounds for multiplicative Zagreb indices of bipartite graphs with given diameter, Discrete Appl. Math. 227 (2017) 156-165.10.1016/j.dam.2017.04.037
  22. [22] I. Gutman, N. Trinajstić, Graph theory and molecular orbits. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535-538.10.1016/0009-2614(72)85099-1
  23. [23] B. Furtula, I. Gutman, Z. Kovijani´c Vuki´cevi´c, G. Lekishvili, G. Popivoda, On an old/new degreebased topological index, Sciences mathematiques 40 (2015) 19-31.
  24. [24] S. Mukwembi, A note on diameter and the degree sequence of a graph, Appl. Math. Lett. 25 (2012) 175-178.10.1016/j.aml.2011.08.010
  25. [25] R. Todeschini, D. Ballabio, V. Consonni, Novel molecular descriptors based on functions of new vertex degrees, in: I. Gutman, B. Furtula (Eds.), Novel Molecular Structure Descriptors Theory and Applications I, Univ. Kragujevac, Kragujevac (2010) 72-100.
  26. [26] R. Todeschini, V. Consonni, New local vertex invariants and molecular descriptors based on functions of the vertex degrees, MATCH Commun. Math. Comput. Chem. 64 (2010) 359-372.
  27. [27] S. Wang, B. Wei, Multiplicative Zagreb indices of k-trees, Discrete Appl. Math. 180 (2015) 168-175.10.1016/j.dam.2014.08.017
  28. [28] O. Ivanciuc, QSAR comparative study of Wiener descriptors for weighted molecular graphs, J. Chem. Inf. Comput. Sci. 40 (2000) 1412-1422.10.1021/ci000068y11128100
  29. [29] O. Ivanciuc, T. Ivanciuc, AT. Balaban, The complementary distance matrix, a new molecular graph metric, ACH Models Chem. 137 (2000) 57-82.
Language: English
Page range: 257 - 268
Submitted on: Jan 13, 2018
Accepted on: Mar 8, 2018
Published on: May 17, 2018
Published by: SAN University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Jia-Bao Liu, Jing Zhao, Shaohui Wang, M. Javaid, Jinde Cao, published by SAN University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.