Have a personal or library account? Click to login
One-Match-Ahead Forecasting in Two-Team Sports with Stacked Bayesian Regressions Cover

One-Match-Ahead Forecasting in Two-Team Sports with Stacked Bayesian Regressions

By: Max W. Y. Lam  
Open Access
|Feb 2018

References

  1. [1] I. Bhandari et al., Advanced Scout: Data Mining and Knowledge Discovery in NBA Data, Data Mining and Knowledge Discovery, 1(1), 121–125, 1997.10.1023/A:1009782106822
  2. [2] D. B. Hausch & W. T. Ziemba, Handbook of Sports and Lottery Markets, Elsevier, 2011.
  3. [3] M. Ottaviani & P. N. Sørensen, Surprised by the Parimutuel Odds?, The American Economic Review, 99(5), 2129–2134, 2009.10.1257/aer.99.5.2129
  4. [4] M. Haghighat et al., A Review of Data Mining Techniques for Result Prediction in Sports, Advances in Computer Science: an International Journal, 2(5), 7–12, 2013.
  5. [5] M. Lázaro-Gredilla et la., Sparse Spectrum Gaussian Process Regression, Journal of Machine Learning Research, 11(Jun), 1865–1881, 2010.
  6. [6] C. E. Rasmussen & C. K. Williams, Gaussian Processes for Machine Learning, MIT Press, 2006.10.7551/mitpress/3206.001.0001
  7. [7] D. J. MacKay, Introduction to Gaussian Processes. NATO ASI Series F Computer and Systems Sciences, 168, 133–166, 1998.
  8. [8] D. Duvenaud, Automatic Model Construction with Gaussian Processes, Doctoral Dissertation, University of Cambridge, 2014.
  9. [9] R. M. Neal, Bayesian Learning for Neural Networks, Springer Science & Business Media, 118, 2012.
  10. [10] Y. Gal & R. Turner, Improving the Gaussian Process Sparse Spectrum Approximation by Representing Uncertainty in Frequency Inputs, In: 32nd International Conference on Machine Learning, 655–664, 2015.
  11. [11] N. Wiener, Generalized Harmonic Analysis, Acta mathematica, 55(1), 117–258, 1930.10.1007/BF02546511
  12. [12] A. Khintchine, Korrelationstheorie der Stationren Stochastischen Prozesse, Mathematische Annalen, 109(1), 604–615, 1934.10.1007/BF01449156
  13. [13] S. Bochner, Monotone Funktionen, Stieltjessche Integrale Und Harmonische Analyse, Mathematische Annalen, 108(1), 378–410, 1933.10.1007/BF01452844
  14. [14] J. Quiñonero-Candela et la., A Unifying View of Sparse Approximate Gaussian Process Regression, Journal of Machine Learning Research, 6(Dec), 1939–1959, 2005.
  15. [15] J. S. Simonoff, Smoothing Methods in Statistics, Springer Science & Business Media, 2012.
  16. [16] E. S. Gardner, Exponential Smoothing: The State of the Art, Journal of Forecasting, 4(1), 1–28, 1985.10.1002/for.3980040103
  17. [17] D. Oliver, Basketball on Paper: Rules and Tools for Performance Analysis, Potomac Books, Inc., 2004.
  18. [18] W. L. Winston, Mathletics: How Gamblers, Managers, and Sports Enthusiasts Use Mathematics in Baseball, Basketball, and Football, Princeton University Press, 2012.10.1515/9781400842070
  19. [19] D. Kingma & J. Ba, Adam: A Method for Stochastic Optimization, In: International Conference on Learning Representations 2014, 1–13, 2014.
  20. [20] C. Saunders et la., Ridge Regression Learning Algorithm in Dual Variables. In: 15th International Conference on Machine Learning, 515–521, 1998.
  21. [21] S. An et la., Face Recognition Using Kernel Ridge Regression. In: Computer Vision and Pattern Recognition 2007, IEEE, 1–7, 2007.10.1109/CVPR.2007.383105
  22. [22] M. Xu et la., Decision Tree Regression for Soft Classification of Remote Sensing Data, Remote Sensing of Environment, 97(3), 322–336, 2005.10.1016/j.rse.2005.05.008
  23. [23] Y. Freund, & R. E. Schapire, A Desicion-Theoretic Generalization of On-line Learning and An Application to Boosting, In: European Conference on Computational Learning Theory 1995, Springer Berlin Heidelberg, 23–37, 1995.10.1007/3-540-59119-2_166
  24. [24] J. H. Friedman, Greedy Function Approximation: a Gradient Boosting Machine, Annals of Statistics, 1189–1232, 2001.10.1214/aos/1013203451
  25. [25] L. Breiman, Random Forests, Machine learning, 45(1), 5–32, 2001.10.1023/A:1010933404324
  26. [26] F. Pedregosa et la., Scikit-learn: Machine Learning in Python, Journal of Machine Learning Research, 12(Oct), 2825–2830, 2011.
  27. [27] J. Quinonero-Candela et la., Evaluating Predictive Uncertainty Challenge. In: Machine Learning Challenges. Evaluating Predictive Uncertainty, Visual Object Classification, and Recognising Tectual Entailment, Springer Berlin Heidelberg, 1–27, 2006.10.1007/11736790_1
  28. [28] J. Kohonen & J. Suomela, Lessons Learned in the Challenge: Making Predictions and Scoring Them. In: Machine Learning Challenges. Evaluating Predictive Uncertainty, Visual Object Classification, and Recognising Tectual Entailment, Springer Berlin Heidelberg, 1–27, 2006.
  29. [29] D. Miljković et la., The Use of Data Mining for Basketball Matches Outcomes Prediction, In: 8th International Symposium on Intelligent Systems and Informatics (SISY), IEEE, 309–312, 2010.10.1109/SISY.2010.5647440
  30. [30] C. Cao, Sports Data Mining Technology Used in Basketball Outcome Prediction, Masters Dissertation, Dublin Institute of Technology, 2012.
  31. [31] M. Beckler et la., NBA Oracle, https://www.mbeckler.org/coursework/2008 – 2009/10701report.pd f, 2013.
  32. [32] E. Zdravevski, & A. Kulakov, System for Prediction of the Winner in a Sports Game, In: ICT Innovations, Springer Berlin Heidelberg, 55–63, 2009.10.1007/978-3-642-10781-8_7
  33. [33] B. Loeffelholz et la., Predicting NBA Games Using Neural Networks, Journal of Quantitative Analysis in Sports, 5(1), 1–15, 2009.10.2202/1559-0410.1156
Language: English
Page range: 159 - 171
Submitted on: Feb 10, 2017
Accepted on: Apr 10, 2017
Published on: Feb 9, 2018
Published by: SAN University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Max W. Y. Lam, published by SAN University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.