Have a personal or library account? Click to login
A Machine Learning Approach for the Segmentation of Driving Maneuvers and its Application in Autonomous Parking Cover

A Machine Learning Approach for the Segmentation of Driving Maneuvers and its Application in Autonomous Parking

Open Access
|May 2017

References

  1. [1] K. Min, J. Choi, H. Kim, and H. Myung, Design and implementation of path generation algorithm for controlling autonomous driving and parking, in 12th International Conference on Control, Automation and Systems (ICCAS), Jeju Island, Korea, 2012, pp. 956-959
  2. [2] I. E. Paromtchik and C. Laugier, Autonomous parallel parking of a nonholonomic vehicle, in Proc. of the IEEE Intelligent Vehicles Symposium, Tokyo, Japan, 1996, pp. 13-18
  3. [3] J. Z. Kolter, C. Plagemann, D. T. Jackson, A. Y. Ng, and S. Thrun, A probabilistic approach to mixed open-loop and closed-loop control, with application to extreme autonomous driving, in IEEE International Conference on Robotics and Automation, Anchorage, Alaska, USA, 2010, pp. 839-84510.1109/ROBOT.2010.5509562
  4. [4] T. K. Lau, Learning autonomous drift parking from one demonstration, in Proc. of the IEEE International Conference on Robotics and Biomimetics, Phuket, Thailand, 2011, pp. 1456-146110.1109/ROBIO.2011.6181495
  5. [5] M. R. Heinen, F. S. Osório, F. J. Heinen, and C. Kelber, Seva3d: Using artificial neural networks to autonomous vehicle parking control, in 2006 International Joint Conference on Neural Networks, Vancouver, BC, Canada, 2006, pp. 4704-471110.1109/IJCNN.2006.247124
  6. [6] N. N. Samani, J. Ghaisari, and M. Danesh, 2nd international econference on computer and knowledge engineering (iccke), in 2006 International Joint Conference on Neural Networks, 2012, pp. 117-122
  7. [7] D. Gorinevsky, A. Kapitanovsky, and A. Goldenberg, Design of radial basis function-based controller for autonomous parking of wheeled vehicles, in Proc. of the American Control Conference, Baltimore, Maryland, 1994, pp. 806-810
  8. [8] S. Kim, W. Liu, and K. A. Marczuk, Autonomous parking from a random drop point, in 2014 IEEE Intelligent Vehicles Symposium (IV), Dearborn, Michigan, USA, 2014, pp. 498-50310.1109/IVS.2014.6856475
  9. [9] Y. Wang and X. Zhu, Hybrid fuzzy logic controller for optimized autonomous parking, in American Control Conference (ACC), Washington, DC, USA, 2013, pp. 182-18710.1109/ACC.2013.6579834
  10. [10] Z. Joung, K. J. W. X. DongJi, and K. Y. Bae, A study of autonomous parking for a 4-wheel driven mobile robot, in Proc. of the 26th Chinese Control Conference, Zhangjiajie, Hunan, China, 2007, pp. 179-184
  11. [11] R. Schubert, E. Richter, and G. Wanielik, Comparison and evaluation of advanced motion models for vehicle tracking, in 11th International Conference on Information Fusion, 2008
  12. [12] B. Siciliano and O. Kathib, Springer Handbook of Robotics, Berlin, Germany: Springer, 200810.1007/978-3-540-30301-5
  13. [13] P. S. Maybeck, Stochastic Models, Estimation and Control, New York, NY, USA: Academic Press, 1979, vol. 1
  14. [14] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning, Springer-Verlag, 200110.1007/978-0-387-21606-5
  15. [15] P. Banerjee and R. Nevatia, Dynamics based trajectory segmentation for uav videos, in Conference on Advanced Video and Signal Based Surveillance (AVSS), 2010 Seventh IEEE International, Boston, MA: IEEE, 2010, pp. 345 - 35210.1109/AVSS.2010.23
  16. [16] J. H. Friedman, On bias, variance, 0/1-loss and the curse of dimensionality, Data Mining and Knowledge Discovery, vol. 1, pp. 55-77, 199710.1023/A:1009778005914
  17. [17] T. G. Dietterich, Machine learning research: Four current directions, AI Magazine, vol. 18, no. 4, pp. 97-136, 1997
  18. [18] L. Breiman, Random forests, Machine Learning, vol. 45, no. 1, pp. 5-32, 200110.1023/A:1010933404324
  19. [19] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and Regression Trees, ser. The Wadsworth & Brooks/Cole Statistics/Probability Series, Wadsworth, 1984
  20. [20] M. Botsch and J. A. Nossek, Construction of interpretable radial basis function classifiers based on the random forest kernel, in IEEE World Congress on Computational Intelligence 2008 (WCCI 2008), 200810.1109/IJCNN.2008.4633793
  21. [21] L. Breiman, Out-of-bag estimation, University of California, Berkeley, Tech. Rep., 1996
  22. [22] J. Schürmann, Pattern Classification: a unified view of statistical and neural approaches, John Wiley & Sons, 1996
Language: English
Page range: 243 - 255
Submitted on: Apr 14, 2016
Accepted on: Nov 14, 2016
Published on: May 3, 2017
Published by: SAN University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Gennaro Notomista, Michael Botsch, published by SAN University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.