Have a personal or library account? Click to login
MapReduce and Semantics Enabled Event Detection using Social Media Cover

MapReduce and Semantics Enabled Event Detection using Social Media

By: Peng Yan  
Open Access
|Mar 2017

References

  1. [1] J. Wen and B. Lee, Event Detection in Twitter, In Proceedings of the 5th International AAAI Conference on Weblogs and Social Media, 2011, 401-408.10.1609/icwsm.v5i1.14102
  2. [2] T. Sakaki, M. Okazaki, and Y. Matsuo, Earthquake shakes Twitter users: real-time event detection by social sensors, In Proceedings of the 19th International Conference on World Wide Web, 2010, 851-860.10.1145/1772690.1772777
  3. [3] Q. Zhao and P. Mitra, Event Detection and Visualization for Social Text Streams, In Proceedings of the International AAAI Conference on Weblogs and Social Media, 2007, 26-28.
  4. [4] G. Kumaran and J. Allan, Text classification and named entities for new event detection, In Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 2004, 297-304.10.1145/1008992.1009044
  5. [5] R. Parikh and K. Karlapalem, Et: events from tweets. In Proceedings of the 22nd International Conference on World Wide Web companion, 2013, 613-620.10.1145/2487788.2488006
  6. [6] G. Fung, J. Yu, P. Yu, and H. Lu, Parameter free bursty events detection in text streams, In Proceedings of the 31st International Conference on Very Large Databases, 2005, 181-192.
  7. [7] A. Guille and C. Favre, Mention-anomaly-based event detection and tracking in twitter, Advances in Social Networks Analysis and Mining(ASONAM), 2014, 375-382.10.1109/ASONAM.2014.6921613
  8. [8] X. Wang, F. Zhu, J. Jiang and S. Li, Real time event detection in twitter, In: Web-Age Information Management, Springer, Berlin Heidelberg, 2013, 502-513.10.1007/978-3-642-38562-9_51
  9. [9] A. Ritter, S. Clark and O. Etzioni, Named entity recognition in tweets: an experimental study, In Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2011, 1524-1534.
  10. [10] J. Kleinberg, Bursty and hierarchical structure in streams, Data Mining and Knowledge Discovery 7, no. 4, 2003, 373-397.10.1023/A:1024940629314
  11. [11] PearAnalytics. Twitter study - august 2009, http://www.pearanalytics.com/wpcontent/uploads/2009/08/Twitter-Study-August-2009.pdf, 2009
  12. [12] R. Li, S. Wang, H. Deng, R. Wang and K. Chang, Towards social user profiling: unified and discriminative influence model for inferring home locations. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2012, 1023-1031.10.1145/2339530.2339692
  13. [13] Japan Earthquake, 2011, http://en.wikipedia.org/wiki/2011_T%C5%8Dhoku_earthquake_and_tsunami
  14. [14] Death of Bin Ladin, 2011, http://en.wikipedia.org/wiki/Death_of_Osama_bin_Laden
  15. [15] F. Chen and D. Neill, Non-parametric scan statistics for event detection and forecasting in heterogeneous social media graphs. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2014, 1166-1175.10.1145/2623330.2623619
  16. [16] S. Levine, How fast the news spreads through social media, In http://blog.sysomos.com/2011/05/02/how-fast-the-news-spreads-through-social-media/, 2012.
  17. [17] J. Benhardus and J. Kalita, Streaming trend detection in twitter, International Journal of Web Based Communities 9, no. 1, 2013, 122-139.10.1504/IJWBC.2013.051298
  18. [18] D, Shamma, L. Kennedy and E. Churchill, Peaks and persistence: modeling the shape of microblog conversations, In Proceedings of the ACM 2011 conference on Computer supported cooperative work, 2011, 355-358.10.1145/1958824.1958878
  19. [19] J. Lau, N. Collier and T. Baldwin, On-line Trend Analysis with Topic Models:\# twitter Trends Detection Topic Model Online, In COLING, 2012, 1519-1534.
  20. [20] T. Lappas, B. Arai, M. Platakis, D. Kotsakos and D. Gunopulos, On burstiness-aware search for document sequences, In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2009, 477-486.10.1145/1557019.1557075
  21. [21] D. Gruhl, R. Guha, D. Liben-Nowell and A. Tomkins, Information diffusion through blogspace, In Proceedings of the 13th International Conference on World Wide Web, 2004, 491-501.10.1145/988672.988739
  22. [22] Y. Hu, A. John, D. Seligmann and F. Wang, What Were the Tweets About? Topical Associations between Public Events and Twitter Feeds, In: ICWSM, 2012.
  23. [23] C. Li, A. Sun and A. Datta. Twevent: segment-based event detection from tweets, In Proceedings of the 21st ACM International Conference on Information and Knowledge Management, 2012, 155-164.10.1145/2396761.2396785
  24. [24] A. Kaplan and M. Haenlein, The early bird catches the news: Nine things you should know about micro-blogging. Business Horizons 54, no. 2, 2011, 105-113.10.1016/j.bushor.2010.09.004
  25. [25] Y. Teh, M. Jordan, M. Beal and D. Blei, Hierarchical dirichlet processes, Journal of the American Statistical Association 101, no. 476, 200610.1198/016214506000000302
Language: English
Page range: 201 - 213
Submitted on: Jan 1, 2016
Accepted on: Jul 4, 2016
Published on: Mar 20, 2017
Published by: SAN University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Peng Yan, published by SAN University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.