Have a personal or library account? Click to login
MIDACO Parallelization Scalability on 200 MINLP Benchmarks Cover
Open Access
|Mar 2017

References

  1. [1] Babu B., Angira A., A differential evolution approach for global optimisation of minlp problems, In: Proceedings of the Fourth Asia Pacific Conference on Simulated Evolution and Learning (SEAL 2002), Singapore, 2002, pp. 880–884.
  2. [2] Cardoso M.F., Salcedo R.L., Azevedo S.F., Barbosa D., A simulated annealing approach to the solution of MINLP problems, Computers Chem. Engng. 12(21), 1997, pp. 1349–1364.10.1016/S0098-1354(97)00015-X
  3. [3] Costa L., Oliveira P., Evolutionary algorithms approach to the solution of mixed integer non-linear programming problems, Comput Chem Eng, 25(23), 2001, 257-266.10.1016/S0098-1354(00)00653-0
  4. [4] Deep K., Krishna P.S., Kansal M.L., Mohan C., A real coded genetic algorithm for solving integer and mixed integer optimization problems. Appl. Math. Comput., 212(2), 2009, pp. 505–518.10.1016/j.amc.2009.02.044
  5. [5] European Space Agency (ESA) and Advanced Concepts Team (ACT), Gtop database - global optimisation trajectory problems and solutions, Software available at http://www.esa.int/gsp/ACT/inf/op/globopt.htm, 2011.
  6. [6] Glover F., Parametric tabu-search for mixed integer programs, Comput Oper Res 33(9), 2006, 24492494.10.1016/j.cor.2005.07.009
  7. [7] Gupta S., Tan G., A scalable parallel implementation of evolutionary algorithms for multi-objective optimization on GPUs, Evolutionary Computation (CEC), IEEE Congress on, Sendai, 2015, pp. 1567–1574.10.1109/CEC.2015.7257074
  8. [8] Quinn J.M., Parallel Programming in C with MPI and OpenMP, McGraw-Hill, 2003.
  9. [9] GAMS MINLPlib - A collection of Mixed Integer Nonlinear Programming models. Washington, DC, USA; software available at http://www.gamsworld.org/minlp/minlplib.htm, 2016.
  10. [10] Laessig J., Sudholt D., General upper bounds on the runtime of parallel evolutionary algorithms, Evolutionary Computation, vol. 22, no. 3, 2014, pp. 405-437.10.1162/EVCO_a_00114
  11. [11] Liang B., Wang J., Jiang Y., Huang D., Improved Hybrid Differential Evolution-Estimation of Distribution Algorithm with Feasibility Rules for NLP/MINLP, Engineering Optimization Problems, Chin. J. Chem. Eng. 20(6), 2012, pp. 1074–1080.10.1016/S1004-9541(12)60589-8
  12. [12] Mohamed A.W., An efficient modified differential evolution algorithm for solving constrained non-linear integer and mixed-integer global optimization problems. Int. J. Mach. Learn. & Cyber., 2015, pp. 1–19.10.1007/s13042-015-0479-6
  13. [13] Munawar A., Redesigning Evolutionary Algorithms for Many-Core Processors Ph.D. Thesis, Graduate School of Information Science and Technology, Hokkaido University, Japan, 2012.
  14. [14] Du X., Ni Y., Yao Z., Xiao R., High performance parallel evolutionary algorithm model based on MapReduce framework, Int. J. Computer Applications in Technology, Vol. 46, No. 3, 2013, pp. 290–296.10.1504/IJCAT.2013.052807
  15. [15] Powell D., Hollingsworth J., A NSGA-II, web-enabled, parallel optimization framework for NLP and MINLP, Proceedings of the 9th annual conference on Genetic and evolutionary computation, 2007, pp. 2145–2150.10.1145/1276958.1277372
  16. [16] Sakuray Pais M., Yamanaka K., Rodrigues Pinto E., Rigorous Experimental Performance Analysis of Parallel Evolutionary Algorithms on Multicore Platforms, In IEEE Latin America Transactions, vol. 12, no. 4, 2014, pp. 805–811.10.1109/TLA.2014.6868886
  17. [17] Schlueter M., Egea J.A., Banga J.R., Extended ant-colony optimization for non-convex mixed integer nonlinear programming, Comput. Oper. Res. 36(7), 2009, 2217–2229.10.1016/j.cor.2008.08.015
  18. [18] Schlueter M., Gerdts M., The Oracle Penalty Method. J. Global Optim. 47(2), 2010, 293–325.10.1007/s10898-009-9477-0
  19. [19] Schlueter, M., Gerdts, M., Rueckmann J.J., A Numerical Study of MIDACO on 100 MINLP Benchmarks, Optimization 7(61), 2012, pp. 873–900.10.1080/02331934.2012.668545
  20. [20] Schlueter M., Erb S., Gerdts M., Kemble S., Rueckmann J.J., MIDACO on MINLP Space Applications, Advances in Space Research, 51(7), 2013, 1116–1131.10.1016/j.asr.2012.11.006
  21. [21] Schlueter M., MIDACO Software Performance on Interplanetary Trajectory Benchmarks, Advances in Space Research, 54(4), 2014, 744–754.10.1016/j.asr.2014.05.002
  22. [22] Schlueter M., MIDACO Solver - Global Optimization Software for Mixed Integer Nonlinear Programming, Software available at http://www.midaco-solver.com, 2016.
  23. [23] Schlueter M., Munetomo M., Numerical Assessment of the Parallelization Scalability on 200 MINLP Benchmarks, Proc. of the IEEE-CEC2016 Conference, Vancouver, Canada, 2016.10.1109/CEC.2016.7743877
  24. [24] K. Schittkowski, A Collection of 200 Test Problems for Nonlinear Mixed-Integer Programming in Fortran (User Guide), Report, Department of Computer Science, University of Bayreuth, Bayreuth, 2012.
  25. [25] K. Schittkowski, NLPQLP - A Fortran implementation of a sequential quadratic programming algorithm with distributed and non-monotone line search (User Guide), Report, Department of Computer Science, University of Bayreuth, Bayreuth, 2009.
  26. [26] K. Socha and M. Dorigo, Ant colony optimization for continuous domains, Eur. J. Oper. Res. 85, 2008, pp. 1155–1173.10.1016/j.ejor.2006.06.046
  27. [27] Sudholt D., Parallel Evolutionary Algorithms, In Janusz Kacprzyk and Witold Pedrycz (Eds.): Handbook of Computational Intelligence, Springer, 2015.10.1007/978-3-662-43505-2_46
  28. [28] Wasanapradit T., Mukdasanit N., Chaiyaratana N., Srinophakun T., Solving mixed-integer nonlinear programming problems using improved genetic algorithms, Korean J. Chem. Eng. 28(1), 2011, 32–40.10.1007/s11814-010-0323-3
  29. [29] Yiqing L., Xigang Y., Yongjian L., An improved PSO algorithm for solving non-convex NLP/MINLP problems with equality constraints, Comp. Chem. Eng. 3(31), 2007, 153–162.10.1016/j.compchemeng.2006.05.016
  30. [30] Young C.T., Zheng Y., Yeh C.W., Jang S.S., Information-guided genetic algorithm approach to the solution of MINLP problems, Ind. Eng. Chem. Res. 46, 2007, pp. 1527–1537.10.1021/ie060727h
  31. [31] Yingyong Z., Yongde Z., Qinghua L., Jingang J., Guangbin Y., Improved Multi-objective Genetic Algorithm Based on Parallel Hybrid Evolutionary Theory, International Journal of Hybrid Information Technology Vol.8, No.1, 2015, pp. 133–140.10.14257/ijhit.2015.8.1.11
  32. [32] Yue T., Guan-Zheng T., Shu-Guang D., Hybrid particle swarm optimization with chaotic search for solving integer and mixed integer programming problems. J. Central South Univ., 2014, 21:2731–2742.10.1007/s11771-014-2235-6
Language: English
Page range: 171 - 181
Submitted on: Sep 16, 2016
Accepted on: Nov 15, 2016
Published on: Mar 20, 2017
Published by: SAN University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Martin Schlueter, Masaharu Munetomo, published by SAN University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.