Have a personal or library account? Click to login
Design of Fuzzy Rule-based Classifiers through Granulation and Consolidation Cover

Design of Fuzzy Rule-based Classifiers through Granulation and Consolidation

Open Access
|Feb 2017

References

  1. [1] J. Abonyi, J. A. Roubos, and F. Szeifert, Data-driven generation of compact, accurate, and linguistically sound fuzzy classifiers based on a decision-tree initialization, International Journal of Approximate Reasoning, 23:1–21, 200310.1016/S0888-613X(02)00076-2
  2. [2] S. Aeberhard, D. Coomans, and O. de Vel, Comparative analysis of statistical pattern recognition methods in high dimensional settings, Pattern Recognition, 27(8):1065–1077, 199410.1016/0031-3203(94)90145-7
  3. [3] C. C. Aggarwal, Data Classification: Algorithms and Applications, Chapman & Hall/CRC, 1st edition, 2014
  4. [4] J. Alcala-Fdez, R. Alcala, and F. Herrera, A fuzzy association rule-based classification model for high-dimensional problems with genetic rule selection and lateral tuning, IEEE Transactions on Fuzzy Systems, 19(5):857–872, 201110.1109/TFUZZ.2011.2147794
  5. [5] K. Bache and M. Lichman, UCI machine learning repository, http://archive.ics.uci.edu/ml, 2013
  6. [6] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and regression trees, Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, 1984
  7. [7] B.-C. Chien, J.-Y. Lin, and W.-P. Yang, A classification tree based on discriminant functions, Journal of Information Science and Engineering, 222(3):573–594, 2006
  8. [8] S.-B. Cho, Neural-network classifiers for recognizing totally unconstrained handwritten numerals, IEEE Transactions on Neural Networks, 8(1):43–53, 199710.1109/72.554190
  9. [9] W. W. Cohen, Fast effective rule induction, In Proceedings of the Twelfth International Conference on Machine Learning, pages 115–123, Morgan Kaufmann, 199510.1016/B978-1-55860-377-6.50023-2
  10. [10] C. Cortes and V. Vapnik, Support-vector networks, Machine Learning, 20(3):273–297, September 199510.1007/BF00994018
  11. [11] T. Cover and P. Hart, Nearest neighbor pattern classification, IEEE Transactions on Information Theory, 13(1):21–27, September 200610.1109/TIT.1967.1053964
  12. [12] R. Duda and P. Hart, Pattern Classification and Scene Analysis, Wiley, New York, 1973
  13. [13] I. W. Evett and E. J. Spiehler, Rule induction in forensic science, Technical report, Central Research Establishment, Home Office Forensic Science Service, 1987
  14. [14] R. A. Fisher, The use of multiple measurements in taxonomic problems, Annals of Eugenics, 7(2):179–188, 193610.1111/j.1469-1809.1936.tb02137.x
  15. [15] J. H. Gennari, P. Langley, and D. Fisher, Models of incremental concept formation, Artificial Intelligence, 40(1–3):11–61, 198910.1016/0004-3702(89)90046-5
  16. [16] S. Guillaume and B. Charnomordic, Learning interpretable fuzzy inference systems with FisPro, Information Sciences, 180(20):4409–4427, 201110.1016/j.ins.2011.03.025
  17. [17] J. Hühn and E. Hüllermeier, FURIA: an algorithm for unordered fuzzy rule induction, Data Mining and Knowledge Discovery, 19(3):293–319, 200910.1007/s10618-009-0131-8
  18. [18] H. Ishibuchi, T. Nakashima, and T. Murata, Three-objective genetic-based machine learning for linguistic rule extraction, Information Sciences, 136(1–4):109–133, 200110.1016/S0020-0255(01)00144-X
  19. [19] H. Ishibuchi, K. Nozaki, N. Yamamoto, and H. Tanaka, Selecting fuzzy if-then rules for classification problems using genetic algorithms, IEEE Transactions on Fuzzy Systems, 3(3):260–270, 199510.1109/91.413232
  20. [20] H. Ishibuchi and T. Yamamoto, Rule weight specification in fuzzy rule-based classification systems, IEEE Transactions on Fuzzy Systems, 13(4):428–435, 200510.1109/TFUZZ.2004.841738
  21. [21] L. Kuncheva, Fuzzy Classifier Design, Springer-Verlag, Heidelberg, 200010.1007/978-3-7908-1850-5
  22. [22] K. Larsen, Generalized naive bayes classifiers, SIGKDD Explorations, 7(1):76–81, 200510.1145/1089815.1089826
  23. [23] R. P. Lippmann, Neural network classifiers for speech recognition, The Lincoln Laboratory Journal, 1:107–124, 1988
  24. [24] C. Mencar, C. Castiello, R. Cannone, and A. M. Fanelli, Interpretability assessment of fuzzy knowledge bases: A cointension based approach, International Journal of Approximate Reasoning, 52(4):501–518, 201110.1016/j.ijar.2010.11.007
  25. [25] J. R. Quinlan, Induction of decision trees, Machine Learning, 1(1):81–106, 198610.1007/BF00116251
  26. [26] J. R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1993
  27. [27] Y. Ren, L. Zhang, and P. N. Suganthan, Ensemble classification and regression - recent developments, applications and future directions, IEEE Computational Intelligence Magazine, 11(1):41–53, 201610.1109/MCI.2015.2471235
  28. [28] A. Riid and J.-S. Preden, Interpretability improvement of fuzzy rule-based classifiers via rule compression, In Proceedings of the 2015 Conference of the International Fuzzy Systems Association and the European Society for Fuzzy Logic and Technology, pages 162–169, Gijon, Spain, 201510.2991/ifsa-eusflat-15.2015.26
  29. [29] A. Riid and M. Sarv, Determination of regional variants in the versification of estonian folksongs using an interpretable fuzzy rule-based classifier, In Proceedings of the 8th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT 2013), pages 61–66, Milan, Italy, 201310.2991/eusflat.2013.9
  30. [30] L. Rokach, Pattern Classification Using Ensemble Methods, volume 75 of Series in Machine Perception and Artifical Intelligence, World Scientific Publishing Company, Singapore, 201010.1142/7238
  31. [31] H. Roubos, M. Setnes, and J. Abonyi, Learning fuzzy classification rules from data, Information Sciences, 150(1–2):77–93, 200310.1016/S0020-0255(02)00369-9
  32. [32] J. W. Smith, J. E. Everhart, W. C. Dickson, W. C. Knowler, and R. S. Johannes, Using the ADAP learning algorithm to forecast the onset of diabetes mellitus, In Proceedings of the Symposium on Computer Applications and Medical Care, pages 261–265, Los Alamitos, CA, 1988
  33. [33] W. N. Street, W. H. Wolberg, and O. L. Mangasarian, Nuclear feature extraction for breast tumor diagnosis, In Proceedings of the IS&T 1993 International Symposium on Electronic Imaging: Science and Technology, volume 1905, pages 861–870, San Jose, CA, 199310.1117/12.148698
  34. [34] P. D. Turney, Cost-sensitive classification: Empirical evaluation of a hybrid genetic decision tree induction algorithm, Journal of Artificial Intelligence Research, 2:369–409, 199510.1613/jair.120
  35. [35] W. H Wolberg and O. L. Mangasarian, Multisurface method of pattern separation for medical diagnosis applied to breast cytology, Proceedings of the National Academy of Sciences, 87:9193–9196, 199010.1073/pnas.87.23.9193551302251264
Language: English
Page range: 137 - 147
Published on: Feb 23, 2017
Published by: SAN University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Andri Riid, Jürgo-Sören Preden, published by SAN University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.