Have a personal or library account? Click to login
A Novel Deep Neural Network that Uses Space-Time Features for Tracking and Recognizing a Moving Object Cover

A Novel Deep Neural Network that Uses Space-Time Features for Tracking and Recognizing a Moving Object

Open Access
|Feb 2017

References

  1. [1] Y. Zhang, K. Sohn, R. Villegas, P. Gang and L. Honglak, Improving Object Detection with Deep Convolutional Networks via Bayesian Optimization and Structured Prediction, Journal CoRR, vol abs/1504.03293, 201510.1109/CVPR.2015.7298621
  2. [2] C. Szegedy, A. Toshev, and D. Erhan, Deep Neural Networks for Object Detection, Advances in Neural Information Processing Systems 26, 2013, pp. 2553–2561
  3. [3] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. Le-Cun, What is the Best Multi-Stage Architecture for Object Recognition?, in ’ICCV’, IEEE, 2009, pp. 2146–215310.1109/ICCV.2009.5459469
  4. [4] S. Luck, Visual short term memory, in Scholarpedia, 2007, VOLUME 2, number 6, pp. 332810.4249/scholarpedia.3328
  5. [5] E. Averbach, and A. S. Coriell, Short-Term Memory in Vision, The Bell System Technical Journal, 1961, vol. 40, Issue 1, pp. 309–32810.1002/j.1538-7305.1961.tb03987.x
  6. [6] Y. Jiang, R. M. Zur, L. L. Pesce and a. K. Drukker, A study of the effect of noise injection on the training of artificial neural networks, in Neural Network IJCNN International Joint Conference on, IEEE, 2009, pp. 1428–143210.1109/IJCNN.2009.5178981
  7. [7] Y. Jiang R., M. Zur, L. L. Pesce and K. Drukker, Noise injection for training artificial neural networks: A comparison with weight decay and early stopping, in Medical Physics, vol. 36, 2009, pp. 4810–481810.1118/1.3213517277171819928111
  8. [8] O. Chang, Reliable object recognition by using co-operative neural agents, in 2014 International Joint Conference on Neural Networks, (IJCNN), Beijing, China, July 6–11, 2014, pp. 2571–257810.1109/IJCNN.2014.6889412
  9. [9] Chang Oscar, A Bio-Inspired Robot with Visual Perception of Affordances, In: Computer Vision - ECCV 2014 Workshops: Zurich, Switzerland, September 6–7 and 12, 2014, Proceedings, Part II, editors Agapito, Lourdes and Bronstein, M. Michael and Rother, Carsten, Springer International Publishing. Switzerland, 2015, pp. 420–42610.1007/978-3-319-16181-5_31
  10. [10] P. Constante, A. Gordon, O. Chang, E. Pruna, I. Escobar, F. Acua, Artificial Vision Techniques for Strawberrys Industrial Classification, IEEE Latin America Transactions, 2016, In-press10.1109/TLA.2016.7555221
  11. [11] M. H. Mahoor, R. Godzdanker, K. Dalamagkidis and K. P. Valavanis, Vision-Based Landing of Light Weight Unmanned Helicopters on a Smart Landing Platform, in Journal of Intelligent Robotic Systems, vol. 61, 2011, pp. 251–26510.1007/978-94-007-1110-5_17
  12. [12] I. F. Mondragon, P. Campoy, C. Martinez and M. A. Olivares-Mendez, 3D pose estimation based on planar object tracking for UAVs control, in Robotics and Automation (ICRA), 2010 IEEE International Conference on, 2010, pp. 35–4110.1109/ROBOT.2010.5509287
  13. [13] M. Woolridge and N. R. Jennings, Intelligent agents: Theory and practice, in: The Knowledge Engineering Review, vol. 10, no. 2, 1995, pp. 115–15210.1017/S0269888900008122
  14. [14] Y. Bengio, Learning Deep Architectures for AI, In: Found. Trends Mach. Learn, vol. 2, number 1, 2009 pp. 1–12710.1561/2200000006
  15. [15] K. Suzuki, S. Wakisaka, and N. Fujii, Substitutional reality system: a novel experimental platform for experiencing alternative reality, In: Scientific reports, vol. 2, 201210.1038/srep00459338029622724058
  16. [16] A. Dorian, Can we build a conscious machine?, In: CoRR, 2014, vol. abs/1411.5224
Language: English
Page range: 125 - 136
Published on: Feb 23, 2017
Published by: SAN University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Oscar Chang, Patricia Constante, Andrés Gordon, Marco Singaña, published by SAN University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.