Have a personal or library account? Click to login
Adapting Differential Evolution Algorithms For Continuous Optimization Via Greedy Adjustment Of Control Parameters Cover

Adapting Differential Evolution Algorithms For Continuous Optimization Via Greedy Adjustment Of Control Parameters

By: Miguel Leon and  Ning Xiong  
Open Access
|Mar 2016

References

  1. [1] N. Xiong, D. Molina, M. Leon, and F. Herrera, A walk into metaheuristics for engineering optimization: Principles, methods, and recent trends, International Journal of Computational Intelligence Systems, vol. 8, no. 4, pp. 606-636, 2015.10.1080/18756891.2015.1046324
  2. [2] N. Hansen and A. Ostermeier, Completely derandomized self-adaptation in evolution strategies, Evolutionary Computation, vol. 9, no. 2, pp. 159-195, 2001.10.1162/10636560175019039811382355
  3. [3] F. Herrera and M. Lozano, Two-loop real-coded genetic algorithms with adaptive control of mutation step size, Applied Intelligence, vol. 13, pp. 187-204, 2000.10.1023/A:1026531008287
  4. [4] D. Molina, M. Lozano, A. M. Sanchez, and F. Herrera, Memetic algorithms based on local search chains for large scale continuous optimization problems: Ma-ssw-chains, Soft Computing, vol. 15, pp. 2201-2220, 2011.
  5. [5] R. Storn and K. Price, Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces, Journal of Global Optimization, vol. 11, no. 4, pp. 341 - 359, 1997.10.1023/A:1008202821328
  6. [6] J. Kenedy and R. C. Eberhart, Particle swarm optimization, in In Proc. IEEE Conference on Neural Networks, 1995, pp. 1942-1948.
  7. [7] D. Karaboga, B. Gorkemli, C.Ozturk, and N. Karaboga, A comprehensive survey: artificial bee colony (abc) algorithm and applications, Artificial Intelligence Review, vol. 42, no. 1, pp. 21-57, 2012.10.1007/s10462-012-9328-0
  8. [8] M. Ali and A. Torn, Population set based global optimization algorithms: Some modifications and numerical studies, Computers and Operations Research, vol. 31, pp. 1703-1725, 2004.
  9. [9] S. Garcia, D. Molina, M. Lozano, and F. Herrera, A study on the use of non-parametric tests for analyzing the evolutionary algorithmss behaviour: A case study on the cec2005special session on real parameter optimization, Journal of Heuristics, vol. 15, no. 6, pp. 617-644, 2009.10.1007/s10732-008-9080-4
  10. [10] S. Das and N. Suganthan, Differential evolution: A survey of the state-of-the-art, in IEEE Transactions on Evolutionary Computation, vol. 15, no. 1, 2011, pp. 4-31.10.1109/TEVC.2010.2059031
  11. [11] R. Gamperle, S. D. Muller, and P. Koumoutsakos, A parameter study for differential evolution, in Advances in intelligent systems, fuzzy systems, evolutionary computation, vol. 10, 2002, pp. 293-298.
  12. [12] K. Zielinski, P. Weitkemper, R. Laur, and K. D. Kammeyer, Parameter study for differential evolution using a power allocation problem including interference cancellation, in IEEE Congress on Evolutionary Computation, 2006, pp. 1857-1864.
  13. [13] J. Zhang and A. C. Sanderson, An approximate gaussian model of differential evolution with spherical fitness functions, in Proc. IEEE Congress on Evolutionary Computation, 2007, pp. 2220-2228.
  14. [14] J. Liu and J. Lampinen, A fuzzy adaptive differential evolution algorithm, Soft Computing, vol. 9, no. 6, pp. 448-462, 2005.10.1007/s00500-004-0363-x
  15. [15] F. Xue, A. C. Sanderson, P. P. Bonissone, and R. J. Graves, Fuzzy logic controlled multiobjective differential evolution, in Proc. IEEE Conference on Fuzzy Systems, 2005, pp. 720-725.
  16. [16] A. Qin and P. Suganthan, Self-adaptive differential evolution algorithm for numerical optimization, The 2005 IEEE Congress on Evolutionary Computation, vol. 2, pp. 1785-1791, 2005.
  17. [17] J. Zhang and A. Sanderson, Jade: Adaptive differential evolution with optional external archive, IEEE Transactions on Evolutionary Computation, vol. 13, pp. 945-958, 2009.10.1109/TEVC.2009.2014613
  18. [18] S. M. Islam, S. Das, S. Ghoshand, S. Roy, and P. N. Suganthan, An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization, Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, vol. 42, no. 2, pp. 482-500, 2012.10.1109/TSMCB.2011.216796622010153
  19. [19] Z. Yang, K. Tang, and X. Yao, Scability of generalized adaptive differential evolution for large-scale continuous optimization, Soft Computing, vol. 15, no. 11, pp. 2141-2155, 2001.
  20. [20] R. Tanabe and A. Fukinga, Success-history based parameter adaptation for differential evolution, in 2013 IEEE Congress on Evolutionary Computation (CEC), Cancun, Mexico, 2013, pp. 71-78.10.1109/CEC.2013.6557555
  21. [21] M. Leon and N. Xiong, Investigation of mutation strategies in differential evolution for solving global optimization problems, in Artificial Intelligence and Soft Computing. springer, June 2014, pp. 372-383.10.1007/978-3-319-07173-2_32
  22. [22] X. Yao, Y. Liu, and G. Lin, Evolutionary programming made faster, in Proc. IEEE Transactions on Evolutionary Computation, vol. 3, no. 2, 1999, pp. 82-102.10.1109/4235.771163
  23. [23] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y. P. Chen, A. Auger, and S. Tiwari, Problem definitions and evaluation criteria for the cec 2005 special session on real-parameter optimization, Technical Report, Nanyang Technological University, Singapore And KanGAL Report Number 2005005 (Kanpur Genetic Algorithms Laboratory, IIT Kanpur), Tech. Rep., May 2005.
  24. [24] D. Wolpert and W. Macready, No free lunch theorems for optimization, IEEE Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 67-82, 1997.10.1109/4235.585893
  25. [25] D. Whitley and J. Rowe, Focused no free lunch theorems, in Proc. Conf. Genetic Evolutionary Computing, 2008, pp. 811-818.10.1145/1389095.1389254
  26. [26] M. Leon and N. Xiong, Using random local search helps in avoiding local optimum in diefferential evolution, in Proc. Artificial Intelligence and Applications, AIA2014, Innsbruck, Austria, 2014, pp. 413-420.
Language: English
Page range: 103 - 118
Published on: Mar 10, 2016
Published by: SAN University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Miguel Leon, Ning Xiong, published by SAN University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.