Have a personal or library account? Click to login
The Training Of Multiplicative Neuron Model Based Artificial Neural Networks With Differential Evolution Algorithm For Forecasting Cover

The Training Of Multiplicative Neuron Model Based Artificial Neural Networks With Differential Evolution Algorithm For Forecasting

By: Eren Bas  
Open Access
|Jan 2016

References

  1. [1] W.S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity, Bulletin of Mathematical Biophysics, 5, 1943, 115–133.10.1007/BF02478259
  2. [2] D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning Represantations by Backpropagating Errors, Nature, 323, 1986, 533-536.10.1038/323533a0
  3. [3] M. Basu, T.K. Ho, Learning behavior of single neuron classifiers onlinearly separable or nonseparable inputs, In IEEE LICNN’99, 1999.
  4. [4] R. Labib, New single neuron structure for solving non-linear problems, In IEEE IJCNN’99, 1999, 617–620.
  5. [5] T.A. Plate, Randomly connected sigma–pi neurons can form associator networks, NETCNS: Network: Computation in Neural Systems, 11, 2000, 321–322.10.1088/0954-898X_11_4_305
  6. [6] C.N. Zhang, M. Zhao, M. Wang, Logic operations based on single neuron rational model, IEEE Transactions on Neural Networks, 11, 2000, 739–747.10.1109/72.846745
  7. [7] R.N. Yadav, N. Kumar, P.K. Kalra, J. John, Learning with generalized-mean neuron model. Neurocomputing, 69, 2006, 2026-2032.10.1016/j.neucom.2005.10.006
  8. [8] M. Shiblee, B. Chandra, P.K. Kalra, Learning of geometric mean neuron model using resilient propagation algorithm, Expert Systems with Applications, 37, 2010, 7449-7455.10.1016/j.eswa.2010.04.018
  9. [9] C.H. Aladag, E. Egrioglu, U. Yolcu, Forecast combination by using artificial neural networks, Neural Processing Letters, 32 (3), 2010, 269–276.10.1007/s11063-010-9156-7
  10. [10] G. Zhang, B.E. Patuwo, Y.M. Hu, Forecasting with artificial neural networks: The state of the art. International Journal of Forecasting, 14, 1998, 35-62.10.1016/S0169-2070(97)00044-7
  11. [11] R. Sharda, Neural networks for the MS/OR analyst: An application bibliography, Interfaces, 24 (2), 1994, 116–130.10.1287/inte.24.2.116
  12. [12] A.S. Weigend, B.A. Huberman, D.E. Rumelhart, Predict- ing the future: A connectionist approach, International Journal of Neural Systems, 1, 1990, 193–209.10.1142/S0129065790000102
  13. [13] A.S. Weigend, B.A. Huberman, D.E. Rumelhart, Predict- ing sunspots and exchange rates with connectionist networks. In: Casdagli, M., Eubank, S. (Eds.), Nonlinear Modeling and Forecasting. Addison-Wesley, Redwood City, CA, 1992, 395–432
  14. [14] M. Cottrell, B. Girard, Y. Girard, M. Mangeas, C. Muller, Neural modeling for time series: a statistical stepwise method for weight elimination, IEEE Transactions on Neural Networks, 6(6), 1995, 1355–1364.10.1109/72.471372
  15. [15] R.N. Yadav, P.K. Kalra, J. John, Time series prediction with single multiplicative neuron model, Applied Soft Computing, 7, 2007, 1157-1163.10.1016/j.asoc.2006.01.003
  16. [16] L. Zhao, Y. Yang, PSO-based single multiplicative neuron model for time series prediction, Expert Systems with Applications, 36, 2009, 2805-2812.10.1016/j.eswa.2008.01.061
  17. [17] C.H. Aladag, E. Egrioglu, U. Yolcu, A.Z. Dalar A new time invariant fuzzy time series forecasting method based on particle swarm optimization, Applied Soft Computing, 12, 2012, 3291-3299.10.1016/j.asoc.2012.05.002
  18. [18] R. Storn, K. Price, Differential Evolution: A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces, Technical Report TR-95-012, International Computer Science Institute, Berkeley, 1995.
  19. [19] G. Zhang, Time series forecasting using a hybrid ARIMA and neural network model, Neurocomputing, 50, 200, 159-175.10.1016/S0925-2312(01)00702-0
  20. [20] C.H. Aladag, E. Egrioglu, C. Kadilar, Forecasting nonlinear time series with a hybrid methodology, Applied Mathematic Letters, 22, 2009, 1467-1470.10.1016/j.aml.2009.02.006
  21. [21] U. Yolcu, E. Egrioglu, C.H. Aladag, A new linear & nonlinear artificial neural network model for time series forecasting, Decision Support Systems, 2013, 1340–1347.10.1016/j.dss.2012.12.006
Language: English
Page range: 5 - 11
Published on: Jan 13, 2016
Published by: SAN University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Eren Bas, published by SAN University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.