Have a personal or library account? Click to login
Chaotic States Induced By Resetting Process In Izhikevich Neuron Model Cover

Chaotic States Induced By Resetting Process In Izhikevich Neuron Model

Open Access
|May 2015

References

  1. [1] M.I. Rabinovich, P. Varona, A.I. Selverston, H.D.I. Abarbanel, ”Dynamical principles in neuroscience”, Reviews of Modern Physics, vol.78, no.4, pp.1213–1265, Nov. 2006.
  2. [2] J. Wojcik, A. Shilnikov, ”Voltage interval mappings for activity transitions in neuron models for elliptic bursters”, Physica D: Nonlinear Phenomena, vol.240, no.14, pp.1164-1180, Apr. 2011.
  3. [3] H.A. Braun, J. Schwabedal, M. Dewald, C. Finke, S. Postnova, M.T. Huber, B. Wollweber, H. Schneider, M.C. Hirsch, K. Voigt, U. Feudel, F. Moss, ”Noise-induced precursors of tonic-to-bursting transitions in hypothalamic neurons and in a conductance-based model”, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.21, no.4, 047509, Dec. 2011.10.1063/1.367132622225383
  4. [4] A.L. Hodgkin, A.F. Huxley, ”A quantitative description of membrane current and application to conduction and excitation in nerve”, Journal of Physiology vol.117, no.4, pp.500–544, Aug. 1952.10.1113/jphysiol.1952.sp004764139241312991237
  5. [5] E.M. Izhikevich, ”Simple Model of Spiking Neurons”, IEEE Transactions on Neural Networks, vol.14, no.6, pp. 1569–1572, Nov. 2003.
  6. [6] E.M. Izhikevich, ”Which Model to Use for Cortical Spiking Neurons?”, IEEE Transactions on Neural Networks, vol.15, no.5, pp.1063–1070, Sep. 2004.
  7. [7] K. Aihara, H. Suzuki, ”Theory of hybrid dynamical systems and its applications to biological and medical systems”, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences vol.368, no.1930, pp.4893–4914, May 2010.
  8. [8] S. Coombes, R. Thul, K.C.A. Wedgwood, ”Nonsmooth dynamics in spiking neuron models”, Physica D: Nonlinear Phenomena, vol.241, no.22, pp.2042–2057, Nov. 2012.
  9. [9] W.J. Freeman, ”Tutorial on neurobiology: from single neurons to brain chaos”, International journal of bifurcation and chaos, vol.2, no.3, pp.451–482, Sept. 1992.10.1142/S0218127492000653
  10. [10] N. Schweighofer, K. Doya, H. Fukai, J.V. Chiron, T. Furukawa, M. Kawato, ”Chaos may enhance information transmission in the inferior olive”, Proceedings of the National Academy of Sciences, vol.101, no.13, pp.4655–4660, Sept. 2004.
  11. [11] S. Nobukawa, H. Nishimura, ”Characteristic of Signal Response in Coupled Inferior Olive Neurons with Velarde-Llinás Model”, In SICE Annual Conference, pp.1367–1374, Sept. 2013.
  12. [12] I. T. Tokuda, H. Hoang, N. Schweighofer, M. Kawato, ”Adaptive coupling of inferior olive neurons in cerebellar learning” Neural Networks, vol.47, pp.42–50, Dec. 2013.10.1016/j.neunet.2012.12.00623337637
  13. [13] A. Tamura, T. Ueta, S. Tsuji, ”Bifurcation analysis of Izhikevich neuron model”, Dynamics of continuous, discrete and impulsive systems, Series A: mathematical analysis vol.16, no.6, pp.849–862, 2009.
  14. [14] D. Itou, T. Ueta, K. Aihara, ”Bifurcation Analysis with Threshold Values for Interrupt Autonomous Systems”, IEICE Trans. Fundamentals, vol.94-A, no.8, pp.596–603, Aug. 2011.
  15. [15] S. Nobukawa, H. Nishimura, T. Yamanishi, J.-Q. Liu, ”Chaotic Dynamical States in Izhikevich Neuron Model”, Emerging Trends in Computational Biology, Bioinformatics, and Systems Biology - Algorithms and Software Tools, Elsevier/MK (to be published).
  16. [16] N. Sugiura, K. Fujiwara, R. Hosakawa, K. Jin’no, T. Ikeguchi, ”Estimation of Lyapunov exponents of chaotic response in the Izhikevich neuron model”, IEICE Technical report NLP2013-113, pp.1–6, Dec. 2013
  17. [17] F. Bizzarri, A. Brambilla, G.S. Gajani, ”Lyapunov exponents computation for hybrid neurons”, J. Comput. Neurosci. vol.35, no.2, pp.201–212, Feb. 2013.10.1007/s10827-013-0448-623463130
  18. [18] S. Nobukawa, H. Nishimura, T. Yamanishi, J.-Q. Liu, ”Analysis of Routes to Chaos in Izhikevich Neuron Model with Resetting Process”, Proc. The 7th International Conference on Soft Computing and Intelligent Systems, The 15th International Symposium on Advanced Intelligent Systems (SCIS-ISIS2014), pp.813–818, Dec. 2014.10.1109/SCIS-ISIS.2014.7044746
  19. [19] A.C. Hindmarsh, P.N. Brown, K.E. Grant, S.L. Lee, R. Serban, D.E. Shumaker, C.S. Woodward, ”SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers”, ACM Transactions on Mathematical Software, vol.31, no.3, pp.363–396, Sep. 2005.10.1145/1089014.1089020
  20. [20] M.D. Bernardo (Ed.), Piecewise-smooth dynamical systems: theory and applications, Springer, 2008.
  21. [21] T.S. Parker, L.O. Chua, Practical Numerical Algorithms for Chaotic Systems, Springer-Verlag New York Inc, 1989.10.1007/978-1-4612-3486-9
  22. [22] S. Zambrano, I.P. Mario, J.M. Seoane, M.A. Sanjun, S. Euzzor, A. Geltrude, R. Meucci, F.T. Arecchi, ”Synchronization of uncoupled excitable systems induced by white and coloured noise”, New Journal of Physics, vol.12, no.5, 053040, May 2010.10.1088/1367-2630/12/5/053040
  23. [23] H. Nagashima, Y. Baba, Introduction to chaos: physics and mathematics of chaotic phenomena, CRC Press, 1998.
  24. [24] P. Berge, Y. Pomeau, C. Vidal, Order in chaos, The Deterministic Approach to Turbulence, 1984.
Language: English
Page range: 109 - 119
Published on: May 26, 2015
Published by: SAN University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Sou Nobukawa, Haruhiko Nishimura, Teruya Yamanishi, Jian-Qin Liu, published by SAN University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.