References
- [1] J. Von Neumann and O. Morgenstern, “Game theory and economic behavior,” 1944.
- [2] E. Rasmusen and B. Blackwell, Games and information. Cambridge, 1994, vol. 2.
- [3] J. M. Smith and G. Price, “lhe logic of animal conflict,” Nature, vol. 246, p. 15, 1973.10.1038/246015a0
- [4] J. M. Smith, Evolution and the Theory of Games. Springer, 1993.
- [5] J. Bendor and P. Swistak, “Types of evolutionary stability and the problem of cooperation.” Proceedings of the National Academy of Sciences, vol. 92, no. 8, pp. 3596–3600, 1995.
- [6] A.-L. Barabási and R. Albert, “Emergence of scaling in random networks,” science, vol. 286, no. 5439, pp. 509–512, 1999.
- [7] R. Albert and A.-L. Barabási, “Statistical mechanics of complex networks,” Reviews of Modern Physics, vol. 74, pp. 47–97, 2002.10.1103/RevModPhys.74.47
- [8] G. Thedchanamoorthy, M. Piraveenan, S. Uddin, and U. Senanayake, “Influence of vaccination strategies and topology on the herd immunity of complex networks,” Social Network Analysis and Mining, vol. 4, no. 1, pp. 1–16, 2014.10.1007/s13278-014-0213-5
- [9] M. Prokopenko, M. Piraveenan, and P. Wang, “On convergence of dynamic cluster formation in multiagent networks,” Advances in Artificial Life, pp. 884–894, 2005.10.1007/11553090_89
- [10] M. E. J. Newman, “Mixing patterns in networks,” Physical Review E, vol. 67, no. 2, p. 026126, 2003.
- [11] M. Piraveenan, M. Prokopenko, and A. Y. Zomaya, “Local assortativeness in scale-free networks,” Europhysics Letters, vol. 84, no. 2, p. 28002, 2008.
- [12] M. Piraveenan, M. Prokopenko, and A. Y. Zomaya, “Assortative mixing in directed biological networks,” IEEE/ACM Transactions on computational biology and bioinformatics, vol. 9(1), pp. 66–78, 2012.10.1109/TCBB.2010.8020733240
- [13] R. V. Solé and S. Valverde, “Information theory of complex networks: on evolution and architectural constraints,” in Complex Networks, ser. Lecture Notes in Physics, E. Ben-Naim, H. Frauenfelder, and Z. Toroczkai, Eds. Springer, 2004, vol. 650.10.1007/978-3-540-44485-5_9
- [14] M. Piraveenan, D. Polani, and M. Prokopenko, “Emergence of genetic coding: an informationtheoretic model,” in Advances in Artificial Life. Springer Berlin Heidelberg, 2007, pp. 42–52.10.1007/978-3-540-74913-4_5
- [15] M. Piraveenan, M. Prokopenko, and L. Hossain, “Percolation centrality: Quantifying graphtheoretic impact of nodes during percolation in networks,” PloS one, vol. 8, no. 1, p. e53095, 2013.10.1371/journal.pone.0053095355190723349699
- [16] F. C. Santos and J. M. Pacheco, “Scale-free networks provide a unifying framework for the emergence of cooperation,” Physical Review Letters, vol. 95, no. 9, p. 098104, 2005.
- [17] D. B. Fogel, “Evolving behaviors in the iterated prisoner’s dilemma,” Evolutionary Computation, vol. 1, no. 1, pp. 77–97, 1993.10.1162/evco.1993.1.1.77
- [18] C. Adami and A. Hintze, “Evolutionary instability of zero-determinant strategies demonstrates that winning is not everything,” Nature communications, vol. 4, 2013.10.1038/ncomms3193374163723903782
- [19] D. Kasthurirathna, M. Piraveenan, and M. Harre, “Influence of topology in the evolution of coordination in complex networks under information diffusion constraints,” The European Physical Journal B, vol. 87, no. 1, pp. 1–15, 2014.10.1140/epjb/e2013-40824-5
- [20] D. Kasthurirathna, H. Nguyen, M. Piraveenan, S. Uddin, and U. Senanayake, “Optimisation of strategy placements for public good in complex networks,” in Social Computing (SocialCom), 2014 International Conference on. IEEE, 2014, p. in print.10.1145/2639968.2640080
- [21] W. H. Press and F. J. Dyson, “Iterated prisoners dilemma contains strategies that dominate any evolutionary opponent,” Proceedings of the National Academy of Sciences, vol. 109, no. 26, pp. 10 409–10 413, 2012.10.1073/pnas.1206569109
- [22] P. A. P. Moran et al., “The statistical processes of evolutionary theory.” The statistical processes of evolutionary theory., 1962.
- [23] F. Santos, J. Rodrigues, and J. Pacheco, “Graph topology plays a determinant role in the evolution of cooperation,” Proceedings of the Royal Society B: Biological Sciences, vol. 273, no. 1582, pp. 51–55, 2006.
- [24] J. F. Nash et al., “Equilibrium points in n-person games,” Proceedings of the national academy of sciences, vol. 36, no. 1, pp. 48–49, 1950.10.1073/pnas.36.1.48
- [25] J. Maynard Smith, “The theory of games and the evolution of animal conflicts,” Journal of theoretical biology, vol. 47, no. 1, pp. 209–221, 1974.10.1016/0022-5193(74)90110-6
- [26] S. Le and R. Boyd, “Evolutionary dynamics of the continuous iterated prisoner’s dilemma,” Journal of theoretical biology, vol. 245, no. 2, pp. 258–267, 2007.10.1016/j.jtbi.2006.09.01617125798
- [27] A. Rapoport, Prisoner’s dilemma: A study in conflict and cooperation. University of Michigan Press, 1965, vol. 165.
- [28] D. P. Kraines and V. Y. Kraines, “Natural selection of memory-one strategies for the iterated prisoner’s dilemma,” Journal of Theoretical Biology, vol. 203, no. 4, pp. 335–355, 2000.10.1006/jtbi.2000.108910736212
- [29] D. Iliopoulos, A. Hintze, and C. Adami, “Critical dynamics in the evolution of stochastic strategies for the iterated prisoner’s dilemma,” PLoS computational biology, vol. 6, no. 10, p. e1000948, 2010.10.1371/journal.pcbi.1000948295134320949101
- [30] A. J. Stewart and J. B. Plotkin, “Extortion and cooperation in the prisoners dilemma,” Proceedings of the National Academy of Sciences, vol. 109, no. 26, pp. 10 134–10 135, 2012.10.1073/pnas.1208087109338703522711812