Have a personal or library account? Click to login
Flatness-Based Adaptive Fuzzy Control Of Spark-Ignited Engines Cover
Open Access
|Mar 2015

References

  1. [1] S. Sugihira and H. Ohmori, Model-based starting control of SI engines via adaptive feedback linearization, SICE Annual Conference 2008, The University of Electro-Communications, Japan, Aug. 2008.
  2. [2] J. Zhang, T. Shen and R. Marino, Model-based cold-start speed control scheme for spark ignition engines, Control Engineering Practice, Elsevier, vol. 18, pp. 1285-1294, 2010.
  3. [3] Abid Ali and Jan P. Blath, Nonlinear Torque Control of a Spark-Ignited Engine, Proc. of the 2006 American Control Conference Minneapolis, Minnesota, USA, June 200610.1109/ACC.2006.1657221
  4. [4] Z. Zhang and Z. Sun, Rotational Angle Based Pressure Control of a Common Rail Fuel Injection System for Internal Combustion Engines, 2009 American Control Conference Hyatt Regency Riverfront, St. Louis, MO, USA, June 2009.10.1109/ACC.2009.5160566
  5. [5] T. Leroy, J. Chauvin and N. Petit, Motion planning for experimental air path control of avariablevalve-timing spark ignition engine, Control Engineering Practice, Elsevier, vol. 17, pp. 14321439, 2009.
  6. [6] P. Moulin and J. Chauvin, Modeling and control of the air system of a turbocharged gasoline engine, Control Engineering Practice, vol. 19, pp. 287297, 2011.
  7. [7] O. Fl¨ardh, G. Ericsson, E. Klingborg and J. Martensson, Optimal Air Path Control During Load Transients on a Spark Ignited Engine With Variable Geometry Turbine and Variable Valve Timing, IEEE Transactions on Control Systems Technology, 2014.10.1109/TCST.2013.2245330
  8. [8] A. Kurylowicz, I. Jaworska and S.G. Tzafestas, Robust Stabilizing Control : An Overview, Applied Control : Current Trends and Modern Methodologies (S.G. Tzafestas ed.), Marcel Dekker, pp. 289-324, 1993.
  9. [9] L. Lublin and M. Athans, An experimental comparison of and designs for interferometer testbed, Lectures Notes in Control and Information Sciences: Feedback Control, Nonlinear Systems and Complexity, (Francis B. and Tannenbaum A., eds.), Springer, pp. 150-172, 1995.
  10. [10] J.C. Doyle, K. Glover, P.P. Khargonekar and B.A. Francis, State-Space Solutions to Standard H2 and H Control Problems, IEEE Transactions on Automatic Control, vol. 34, pp. 831-847, 1989.10.1109/9.29425
  11. [11] L.X.Wang, A course in fuzzy systems and control, Prentice-Hall, 1998.
  12. [12] R.J. Wai and J.M. Chang, Implementation of Robust Wavelet-Neural-Network Sliding-Mode Control for Induction Servo Motor Drive, IEEE Transactions on Industrial Electronics, vol. 50, no.6, pp. 1317-1334, 2003.
  13. [13] H.N. Nounou and H. Rehman, Application of adaptive fuzzy control to AC machines, Applied Soft Computing, Elsevier, vol. 7, no.3, pp. 899-907, 2007.10.1016/j.asoc.2006.02.009
  14. [14] Y.J. Lin and W. Wang, Adaptive fuzzy control for a class of uncertain non-affine nonlinear systems, Information Sciences, Elsevier, vol. 177, pp. 3901-3917, 2007.
  15. [15] R. Qi, G. Tao, C. Tan and X. Yao, Adaptive control of discrete-time state-space TS fuzzy systems with general relative degree, Fuzzy Sets and Systems, Elsevier, vol. 217, pp. 2240, 2013.10.1016/j.fss.2012.10.011
  16. [16] Y. Yang, C. Zhou, and X. Jia, Robust adaptive fuzzy control and its application to ship roll stabilization, Information Sciences, Elsevier, vol. 142, pp. 177194, 2002.
  17. [17] S. Tong, H-X. Li and G. Chen, Adaptive Fuzzy Decentralized Control for a Class of Large-Scale Nonlinear Systems, IEEE Transactions on Systems,Man and Cybernetics - Part B: Cybernetics, vol. 34, no.1, pp. 770-775, 2004.10.1109/TSMCB.2003.817039
  18. [18] G. Rigatos and Q. Zhang, Fuzzy model validation using the local statistical approach, Fuzzy Sets and Systems, Elsevier, vol. 60, no.7, pp. 882-904,2009.10.1016/j.fss.2008.07.008
  19. [19] M. Bassevile and I. Nikiforov, Detection of abrupt changes: Theory and Applications, Prentice-Hall, 1993.
  20. [20] R. Sepulveda, O. Montiel, O. Castello and P. Melin, Embedding a high-speed interval type-2 fuzzy controller for a real plant into a FPGA, Applied Soft Computing, Elsevier, vol. 12, no. 3, pp. 988-998, 2012.10.1016/j.asoc.2011.11.031
  21. [21] A. Ballachi, L. Benvenuti, M.D. di Benedetto and A. Sangiovanni-Vincentelli, The design of dynamical observers for hybrid systems: theory and application of an automotive control problem, vol. 49, no. 4, pp. 915-925, 2013.10.1016/j.automatica.2013.01.037
  22. [22] J. Blake Vance, B.C. Kaul, S. Jagannathan and J.A. Drallmeier, Output feedback controller for operation of spark ingition engines at lean conditions using neural networks, IEEE Transactions on Control Systems Technology, vol. 16, no.2, pp. 214-227, 200810.1109/TCST.2007.903368
  23. [23] C. Alipi, C. de Russion and V. Piuri, A neural network-based control solution to air-fuel ratio control for automotive fuel injection systems, IEEE Transactions on Systems, Man and Cybernetics - Part C: Applications and Reviews, vol. 33, no.2, pp. 259-268, 2003.10.1109/TSMCC.2003.814035
  24. [24] G. Colin, Y. Chamuillard, G. Bloch and G. Corde, Neural control of fast nonlinear systems: Application to a turbocharged SI engine with VCT, IEEE Transactions on Neural Networks, vol. 18, no. 4, pp. 1101-1114, 2007.
  25. [25] A. Nguyen, J. Lauber and M. Dambrine, Multiobjective control design for turbo-charged spark ignited air system: a switching Takagi-Sugeno model approach, 2013 American Control Conference, Washington DC, USA, 2013.
  26. [26] G.G. Rigatos, Adaptive fuzzy control with output feedback for H tracking of SISO nonlinear systems, International Journal of Neural Systems, World Scientific, vol. 18, no.4, pp. 1-16, 200810.1142/S012906570800161018763730
  27. [27] G.G. Rigatos, A differential flatness theory approach to observer-based adaptive fuzzy control of MIMO nonlinear dynamical systems, Nonlinear Dynamics, Springer. 2014.10.1109/INTELES.2014.7008988
  28. [28] G.G. Rigatos and S.G. Tzafestas, Adaptive Fuzzy Control for the Ship Steering Problem, Journal of Mechatronics, Elsevier, vol. 16, no. 6, pp. 479-489, 2006.10.1016/j.mechatronics.2006.01.003
  29. [29] G.G. Rigatos, Adaptive fuzzy control for nonlinear dynamical systems based on differential flatness theory, IET Control Theory and Applications, vol. 6, no. 17, pp. 2644 2656, 2012.
  30. [30] G.G. Rigatos, Adaptive fuzzy control of DC motors using state and output feedback, Electric Power Systems Research, Elsevier, vol. 79, no.11, pp. 1579-1592 2009.10.1016/j.epsr.2009.06.007
  31. [31] H. Yue and J. Li, Output-feedback adaptive fuzzy control for a class of nonlinear time-varying delay systems with unknown control directions, IET Control Theory and Applications, vol. 6, pp. 1266-1280, 2012.
  32. [32] H.A.Yousef, M. Hamdy and M. Shafiq, Flatnessbased adaptive fuzzy output tracking excitation control for power system generators, Journal of the Franklin Institute, vol. 350, pp. 2334353, 2013.
  33. [33] Y.W. Cho, C.W. Park, J.H. kim and M. Park, Indirect model reference adaptive fuzzy control of dynamic fuzzy-state space model, IET Proc. on Control Theory and Applications, vol. 148, no.4, pp. 273-282, 2005.10.1049/ip-cta:20010355
  34. [34] G. Rigatos and A. Al-Khazraji, Flatness-Based Adaptive Fuzzy Control for MIMO Nonlinear Dynamical Systems, in: ”Nonlinear Estimation and Applications to Industrial Systems Control”, Nova Publications, 2011.10.1109/AIM.2011.6027088
  35. [35] Y.S. Huang, D.Q. Zhou, S.P. Xiao and D. Ling, Coordinated decentralized hybrid adaptive output feedback fuzzy control for a class of large-scale nonlinear systems with strong interconnections, IET Control Theory and applications, vol. 3, no.9, pp. 1261-1274, 2009.
  36. [36] J. Rudolph, Flatness Based Control of Distributed Parameter Systems, Steuerungs- und Regelungstechnik, Shaker Verlag, Aachen, 2003.
  37. [37] H. Sira-Ramirez and S. Agrawal, Differentially Flat Systems, Marcel Dekker, New York, 2004.10.1201/9781482276640
  38. [38] J. L´evine, On necessary and sufficient conditions for differential flatness, Applicable Algebra in Engineering, Communications and Computing, Springer, vol. 22, no. 1, pp. 47-90, 2011.10.1007/s00200-010-0137-x
  39. [39] M. Fliess and H. Mounier, Tracking control and π-freeness of infinite dimensional linear systems, In: G. Picci and D.S. Gilliam Eds.,Dynamical Systems, Control, Coding and Computer Vision, vol. 258, pp. 41-68, Birkha¨user, 1999.10.1007/978-3-0348-8970-4_3
  40. [40] L.Menhour, B. d'Andr´ea-Novel, M. Fliess and H. Mounier, Coupled nonlinear vehicle control: Flatness-based setting with algebraic estimation techniques, Control Engineering Practice, vol. 2, pp, 13546, 2014.10.1016/j.conengprac.2013.09.013
  41. [41] P. Rouchon, Flatness-based control of oscillators, ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik, vol. 85, no.6, pp. 411-421, 2005.10.1002/zamm.200410194
  42. [42] Ph. Martin and P. Rouchon, Syst`emes plats: planification et suivi des trajectoires, Journ´ees XUPS, ´ Ecole des Mines de Paris, Centre Automatique et Syst`emes, Mai, 1999.
  43. [43] S. Bououden, D. Boutat, G. Zheng, J.P. Barbot and F. Kratz, A triangular canonical form for a class of 0-flat nonlinear systems, International Journal of Control, Taylor and Francis, vol. 84, no. 2, pp. 261-269, 2011.10.1080/00207179.2010.549844
  44. [44] B. Laroche, P. Martin, and N. Petit, Commande par platitude: Equations diff´erentielles ordinaires et aux deriv´ees partielles, Ecole Nationale Sup´erieure des Techniques Avanc´ees, Paris, 2007.
  45. [45] G. Rigatos, Modelling and control for intelligent industrial systems: Adaptive algorithms in robotics and industrial engineering, Springer, 2011.
Language: English
Page range: 231 - 242
Published on: Mar 1, 2015
Published by: SAN University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Gerasimos G. Rigatos, P. Siano, published by SAN University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.