Bashmakova, Izabella and Smirnova Galina. 2000. The Beginnings and Evolution of Algebra. Translated from the Russian by Abe Shenitzer with the editorial assistance of David A. Cox. The Mathematical Association of America.
Bazhanov, Valentin A. 2011. “Mathematical Proof as a Form of Appeal to a Scientific Community,” Russian Studies in Philosophy, vol. 50, no. 4 (Spring 2012), pp. 52–72.
Davidson, Donald. 1967b, “Causal Relations”, Journal of Philosophy, 64, pp. 691–703; reprinted in: Casati, R., and Varzi, A.C. (eds.), Events, Dartmouth, Aldershot, 1996, pp. 401–13, and in” Davidson, D., Essays on Actions and Events, Oxford: Clarendon Press, 1980, pp. 149–62.
Demidov, Sergei S. (Демидов С. С.). 1966. «К истории проблем Гильберта» [On the history of Hilbert’s problems], Историко-математические исследования, 17, pp. 91-122 (in Russian).
Demidov, Sergei S. (Демидов С. С.). 2001. ««Математические проблемы» Гильберта и математика XX века» [“Hilbert’s mathematical problems” and mathematics of the 20th century], Историко-математические исследования, 41 (6), pp. 84-99 (in Russian).
Goguen, Joseph A. 1999a. “An introduction to algebraic semiotics, with applications to user interface design”. In Nehaniv, C. (ed.), Computation for Metaphors, Analogy and Agents. Springer, pp. 242-291.
Goguen, Joseph A. 1999b. “Social and Semiotic Analyses for Theorem Prover User Interface Design”, Formal Aspects of Computing11, pp. 272–301. (Special Issue on User Interfaces for Theorem Provers.)10.1007/s001650050051
Goguen, Joseph A. 2003. “Semiotic morphisms, representations, and blending for interface design”. Proceedings, AMAST Workshop on Algebraic Methods in Language Processing. AMAST Press. 1–15. Conference held in Verona, Italy, 25-27 August.
Goguen, Joseph A. and Harell, D. Fox. 2004a. “Style as a choice of blending principles”. Shlomo Argamon, Shlomo Dubnov, and Julie Jupp (Eds), Style and Meaning in Language, Art Music and Design, AAAI Press, pp. 49-56.
Goguen, Joseph A. and Harell, D. Fox. 2004b. “Information Visualization and Semiotic Morphisms,” in Multidisciplinary Approaches to Visual Representations and Interpretations, Grant Malcolm (Ed.) Oxford: Elsevier, pp. 83-98.
Goguen, Joseph A. and Harell, D. Fox. 2010. “Style: A Computational and Conceptual Blending-Based Approach”, Shlomo Argamon, Kevin Burns, Shlomo Dubnov (Eds), The Structure of Style. Algorithmic Approaches to Understanding Manner and Meaning. Springer, pp. 291-316.
Heyting, A. (1931) “The intuitionist foundations of mathematics,” reprinted in: P. Benacerraf and H. Putnam (eds) Philosophy of Mathematics: Selected Readings, 2nd ed, Cambridge: Cambridge University Press, 1983, pp. 52–61.
Heyting, A. 1955. Les Fondements des Mathématiques. Intuitionnisme. Théorie de la Démonstration. Paris : Gauthier-Villars. Title of the original: Mathematische Grundlagenforschung. Intuitionismus. Beweistheorie. Springer-Verlag, Berlin, 1934.
Heyting, A. 1958. “Intuitionism in mathematics”, in: R. Klibansky (ed.), Philosophy in the Mid-Century. A survey (La Nuova Italia Editrice, Firenze) 101-115.
Kauffman, Louis H. 1990. “Robbins Algebra”. Proceedings of the Twentieth International Symposium on Multiple Valued Logic. IEE Computer Society Press, pp. 54-60.
Kauffman, Louis H. 2001. “The Robbins Problem: computer proofs and human proofs” Kybernetes - The International Journal of Systems and Cybernetics, Gordon Pask Remembered and Celebrated: Part I, Bernard Scott and Ranulph Glanville (eds), 30 (5/6), pp.726-752.
Klein, Jacob. 1968. Greek Mathematical Thought and the Origin of Algebra. Translated by Eva Brann from the German original Griechische Logistik und die Entstehung der Algebra. Reprinted by Dover, 1992.
Kolmogorov, Andrei N. 1932. „Zur Deutung der intuitionistischen Logik“, Mathematische Zeitschrift35, pp. 58–65. English translation in V.M. Tikhomirov (ed.) Selected Works of A.N. Kolmogorov. Vol. I: Mathematics and Mechanics, 151-158. Kluwer, Dordrecht, 1991.
Kolmogorov, Andrei N. 1988. “Letters of A. N. Kolmogorov to A. Heyting”, Успехи математических наук (Uspekhi Matematicheskikh Nauk), 43 (6), pp. 75-77; English translation, Russian Mathematical Surveys, 43 (6), pp. 89-93.
Polymath. 2009. A New Proof of the Density Hales-Jewett Theorem. At http://arxiv.org/abs/0910.3926, arXiv:0910.3926v2 [math.CO], accessed April 2, 2012.
Miller, Rob and Shanahan Murray. 1999. “The event-calculus in classical logic — alternative axiomatizations”, Electronic Transactions on Artificial Intelligence3(1), pp. 77-105.
Stefaneas, Petros and Vandoulakis, Ioannis. 2012. “The Web as a Tool for Proving” Metaphilosophy. Special Issue: Philoweb: Toward a Philosophy of the Web: Guest Editors: Harry Halpin and Alexandre Monnin. Volume 43, Issue 4, pp. 480–498. Reprinted in: Harry Halpin and Alexandre Monnin (Eds) Philosophical Engineering: Toward a Philosophy of the Web. Wiley-Blackwell, 2014, pp. 149-167.
Stefaneas, Petros and Vandoulakis, Ioannis. 2014. Proofs as spatio-temporal processes”, Pierre Edouard Bour, Gerhard Heinzmann, Wilfrid Hodges and Peter Schroeder-Heister (Eds) “Selected Contributed Papers from the 14th International Congress of Logic, Methodology and Philosophy of Science”, Philosophia Scientiæ, 18(3), pp. 111-125.
Stefaneas Petros, Vandoulakis Ioannis, Martínez Maricarmen and Foundalis Harry. 2012. “Web-Based Mathematical Problem-Solving with Codelets”, Computational Creativity, Concept Invention, and General Intelligence Tarek R. Besold, Kai-Uwe Kuehnberger, Marco Schorlemmer, Alan Smaill (Eds.), pp. 38–41.
Vandoulakis, Ioannis. 1998. “Was Euclid’s Approach to Arithmetic Axiomatic?” Oriens–Occidens Cahiers du Centre d’histoire des Sciences et des philosophies arabes et Médiévales, 2 (1998), pp. 141-181.
Vandoulakis, Ioannis. 2009. “Styles of Greek arithmetic reasoning,” 数学史の研究 Study of the History of Mathematics RIMS 研究集会報告集 Kôkyûroku No 1625, pp. 12-22.
Vandoulakis, Ioannis. 2010. “A Genetic Interpretation of Neo-Pythagorean Arithmetic,” Oriens–Occidens Cahiers du Centre d’histoire des Sciences et des philosophies arabes et Médiévales, 7 (2010), pp. 113-154.
Vandoulakis, Ioannis. 2015. “On A.A. Markov’s attitude towards Brouwer’s intuitionism”, Pierre Edouard Bour, Gerhard Heinzmann, Wilfrid Hodges and Peter Schroeder-Heister (Eds) “Proceedings of the 14th Congress of Logic, Methodology and Philosophy of Science”, Philosophia Scientiæ, 19(1), pp. 143-158.
Vandoulakis, Ioannis & Stefaneas, Petros. 2013a. “Conceptions of proof in mathematics”, В.А. Бажанов А.Н. Кричевец, В.А. Шапошников (ред.) Доказательство. Очевидность, достоверность и убедительность в математике. [Proof. Evidence, reliability and convincingness]. Труды Московского семинара по философии математики, pp. 256-281.
Vandoulakis, Ioannis & Stefaneas, Petros. 2014. “On the semantics of proof-events”, Труды XII Международных Колмогоровских Чтений (Proceedings of the 12th International Kolmogorov Conference), 20-23 May 2014, Yaroslavl’, Russia, pp. 137-144.