Barros VG, Rodríguez P, Martijena ID, Pérez A, Molina VA, Antonelli MC. (2006). Prenatal stress and early adoption effects on benzodiazepine receptors and anxiogenic behavior in the adult rat brain. Synapse60: 609–18.10.1002/syn.20336
Belzung C, Lemoine M. (2011). Criteria of validity for animal models of psychiatric disorders: focus on anxiety disorders and depression. Biol. Mood Anxiety Disord.1: 9.
Braun K, Bock J, Wainstock T, Matas E, Gaisler-Salomon I, Fegert J, Ziegenhain U, Segal M. (2017). Experience-induced transgenerational (re-)programming of neuronal structure and functions: Impact of stress prior and during pregnancy. Neurosci Biobehav Rev. pii: S0149-7634(16)30731-X. [Epub ahead of print]10.1016/j.neubiorev.2017.05.021
Bredy TW, Grant RJ, Champagne DL, Meaney MJ. (2003). Maternal care influences neuronal survival in the hippocampus of the rat. Eur. J. Neurosci.18: 2903–9.10.1111/j.1460-9568.2003.02965.x
Burke HM, Davis MC, Otte C, Mohr DC. (2005). Depression and cortisol responses to psychological stress: a meta-analysis. Psychoneuroendocrinology30: 846–56.10.1016/j.psyneuen.2005.02.010
Clements CC, Castro VM, Blumenthal SR, Rosenfield HR, Murphy SN, Fava M, Erb JL, Churchill SE, Kaimal AJ, Doyle AE, Robinson EB, Smoller JW, Kohane IS, Perlis RH. (2015). Prenatal antidepressant exposure is associated with risk for attention-deficit hyperactivity disorder but not autism spectrum disorder in a large health system. Mol. Psychiatry20: 727–34.
Egeland M, Zunszain PA, Pariante CM. (2015). Molecular mechanisms in the regulation of adult neurogenesis during stress. Nat. Rev. Neurosci.16: 189–200.
Finamore TL, Port RL. Developmental stress disrupts habituation but spares prepulse inhibition in young rats. Physiol. Behav.69: 527–30.10.1016/S0031-9384(00)00205-5
Gemmel M, Hazlett M, Bögi E, De Lacalle S, Hill LA, Kokras N, Hammond GL, Dalla C, Charlier TD, Pawluski JL. (2017). Perinatal fluoxetine effects on social play, the HPA system, and hippocampal plasticity in pre-adolescent male and female rats: Interactions with pre-gestational maternal stress. Psychoneuroendocrinology84: 159–171.10.1016/j.psyneuen.2017.07.480
Goodyer IM, Park RJ, Herbert J. (2001). Psychosocial and endocrine features of chronic first-episode major depression in 8-16 year olds. Biol. Psychiatry50: 351–7.
Gross M, Pinhasov A. (2016). Chronic mild stress in submissive mice: Marked polydipsia and social avoidance without hedonic deficit in the sucrose preference test. Behav. Brain Res.298: 25–34.
Grundwald NJ, Benítez DP, Brunton PJ. (2016). Sex-Dependent Effects of Prenatal Stress on Social Memory in Rats: A Role for Differential Expression of Central Vasopressin-1a Receptors. J. Neuroendocrinol.28(4). doi: 10.1111/jne.12343.10.1111/jne.12343
Grundwald NJ, Brunton PJ. (2015). Prenatal stress programs neuroendocrine stress responses and affective behaviors in second generation rats in a sex-dependent manner. Psychoneuroendocrinology62: 204–216.
Huang Y, Chen S, Xu H, Yu X, Lai H, Ho G, Huang Q, Shi X. (2013). Pre-gestational stress alters stress-response of pubertal offspring rat in sexually dimorphic and hemispherically asymmetric manner. BMC Neurosci.14: 67.10.1186/1471-2202-14-67
Huang Y, Shen Z, Hu L, Xia F, Li Y, Zhuang J, Chen P, Huang Q. (2016). Exposure of mother rats to chronic unpredictable stress before pregnancy alters the metabolism of gamma-aminobutyric acid and glutamate in the right hippocampus of offspring in early adolescence in a sexually dimorphic manner. Psychiatry Res.246: 236–245.
Huang Y, Xu H, Li H, Yang H, Chen Y, Shi X. (2012). Pre-gestational stress reduces the ratio of 5-HIAA to 5-HT and the expression of 5-HT1A receptor and serotonin transporter in the brain of foetal rat. BMC Neurosci.13: 22.
Jezová D, Juránková E, Mosnárová A, Kriska M, Skultétyová I. (1996). Neuroendocrine response during stress with relation to gender differences. Acta Neurobiol. Exp. (Wars).56: 779–85.
Kiryanova V, Smith VM, Dyck RH, Antle MC. (2017a). Circadian behavior of adult mice exposed to stress and fluoxetine during development. Psycho-pharmacology (Berl).234: 793–804.10.1007/s00213-016-4515-3
Maccari S, Morley-Fletcher S. (2007). Effects of prenatal restraint stress on the hypothalamus-pituitary-adrenal axis and related behavioural and neurobiological alterations. Psychoneuroendocrinology32 Suppl 1: S10–5.10.1016/j.psyneuen.2007.06.005
Mairesse J, Van Camp G, Gatta E, Marrocco J, Reynaert M-L, Consolazione M, Morley-Fletcher S, Nicoletti F, Maccari S. (2015). Sleep in prenatally restraint stressed rats, a model of mixed anxiety-depressive disorder. Adv. Neurobiol.10: 27–44.
Muhammad A, Kolb B. (2011). Mild prenatal stress-modulated behavior and neuronal spine density without affecting amphetamine sensitization. Dev. Neurosci.33: 85–98.10.1159/000324744
Pereira-Figueiredo I, Castellano O, Riolobos AS, Ferreira-Dias G, López DE, Sancho C. (2017). Long-Term Sertraline Intake Reverses the Behavioral Changes Induced by Prenatal Stress in Rats in a Sex-Dependent Way. Front. Behav. Neurosci.11: 99.
Rayen I, Gemmel M, Pauley G, Steinbusch HWM, Pawluski JL. (2015). Developmental exposure to SSRIs, in addition to maternal stress, has long-term sex-dependent effects on hippocampal plasticity. Psychopharmacology (Berl).232: 1231–1244.
Rayen I, van den Hove DL, Prickaerts J, Steinbusch HW, Pawluski JL. (2011). Fluoxetine during development reverses the effects of prenatal stress on depressive-like behavior and hippocampal neurogenesis in adolescence. PLoS One6: e24003.
Rice D, Barone S, Jr. (2000). Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ. Health Perspect.108 Suppl 3: 511–33.
Talge NM, Neal C, Glover V. (2007). Antenatal maternal stress and long-term effects on child neurodevelopment: how and why? J. Child Psychol. Psychiatry.48(3–4): 245–61.
Tarantino LM, Sullivan PF, Meltzer-Brody S. (2011). Using animal models to disentangle the role of genetic, epigenetic, and environmental influences on behavioral outcomes associated with maternal anxiety and depression. Front. psychiatry2: 44.
van den Bergh BRH, van den Heuvel MI, Lahti M, Braeken M, de Rooij SR, Entringer S, Hoyer D, Roseboom T, Räikkönen K, King S, Schwab M. (2017). Prenatal developmental origins of behavior and mental health: the influence of maternal stress in pregnancy. Neurosci. Biobehav. Rev. pii: S0149-7634(16)30734-5, [Epub ahead of print]10.1016/j.neubiorev.2017.07.003
Varga J, Ferenczi S, Kovács KJ, Garafova A, Jezova D, Zelena D. (2013). Comparison of stress-induced changes in adults and pups: is aldosterone the main adrenocortical stress hormone during the perinatal period in rats? PLoS One8: e72313.10.1371/journal.pone.0072313376399524039750
Wainwright SR, Galea LAM. (2013). The neural plasticity theory of depression: assessing the roles of adult neurogenesis and PSA-NCAM within the hippo-campus. Neural Plast.2013: 805497.
Willner P. (2005). Chronic mild stress (CMS) revisited: consistency and behavioural-neurobiological concordance in the effects of CMS. Neuropsychobiology52: 90–110.
Willner P, Towell A, Sampson D, Sophokleous S, Muscat R. (1987). Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology (Berl).93: 358–64.
Xing Y, He J, Hou J, Lin F, Tian J, Kurihara H. (2013). Gender differences in CMS and the effects of antidepressant venlafaxine in rats. Neurochem. Int.63: 570–5.
Zuena AR, Mairesse J, Casolini P, Cinque C, Alemà GS, Morley-Fletcher S, Chiodi V, Spagnoli LG, Gradini R, Catalani A, Nicoletti F, Maccari S. (2008). Prenatal restraint stress generates two distinct behavioral and neurochemical profiles in male and female rats. PLoS One3: e2170.