Have a personal or library account? Click to login

Pyridoindole SMe1EC2 as cognition enhancer in ageing-related cognitive decline

Open Access
|Feb 2018

References

  1. Aloisi F. (2001) Immune function of microglia. Glia36: 165.10.1002/glia.1106
  2. Atcha Z, Rourke C, Neo AHP, Goh CWH, Lim JSK, Aw C-C, Browne ER, Pemberton DJ. (2010). Alternative Method of Oral Dosing for Rats. J Am Assoc Lab Anim Sci. 49(3): 335–343.
  3. Balcerczyk A, Bartosz G, Drzewinska J, Piotrowski Ł, Pulaski Ł, Stefek M. (2014). Antioxidant action of SMe1EC2, the low-basicity derivative of the pyridoindole stobadine, in cell free chemical models and at cellular level Interdiscip Toxicol7(1): 27–32.)10.2478/intox-2014-0005
  4. Batchelor PE, Liberatore GT, Wong JY, Porritt MJ, Frerichs F, Donnan GA, Howells DW. (1999). Activated macrophages and microglia induce dopaminergic sprouting in the injured striatum and express brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. J Neurosci19(5): 1708–16.
  5. Berr C. (2000). Cognitive impairment and oxidative stress in the elderly: results of epidemiological studies. Biofactors13(1–4): 205–9.10.1002/biof.5520130132
  6. Bezprozvanny I. (2010). The rise and fall of Dimebon. Drug News Perspect23(8): 518–523.
  7. Blasi E, Barluzzi R, Bocchini V, Mazzolla R, Bistoni F. (1990). Immortalization of murine microglial cells by a v-raf/v-myc carrying retrovirus. J Neuroimmunol27(2–3): 229–37.10.1016/0165-5728(90)90073-V
  8. Braidy N, Poljak A, Marjo C, Rutlidge H, Rich A, Jugder BE, Jayasena T, Inestrosa NC, Sachdev PS. (2017). Identification of Cerebral Metal Ion Imbalance in the Brain of Aging Octodon degus. Front Aging Neurosci9: 66.10.3389/fnagi.2017.00066537039428405187
  9. Broskova Z, Sotnikova R, Nedelcevova J, Bagi Z. (2013). Effect of a novel stobadine derivative on isolated rat arteries. Interdiscip Toxicol6(2): 63–66.
  10. Brunk UT. (1989). On the origin of lipofuscin; the iron content of residual bodies, and the relation of these organelles to the lysosomal vacuome. A study on cultured human glial cells. Adv Exp Med Biol266: 313–20.
  11. Calabrese V, Scapagnini G, Ravagna A, Colombrita C, Spadaro F, Butterfield DA, Giuffrida Stella AM. (2004). Increased expression of heat shock proteins in rat brain during aging: relationship with mitochondrial function and glutathione redox state. Mech Ageing Dev125(4): 325–35.
  12. Da Cunha C, Wietzikoski EC, Ferro MM, Martinez GR, Vital MA, Hipólide D, Tufik S, Canteras NS. (2008). Hemiparkinsonian rats rotate toward the side with the weaker dopaminergic neurotransmission. Behav Brain Res189(2): 364–72.
  13. Donahue AN, Aschner M, Lash LH, Syversen T, Sonntag WE. (2006).Growth hormone administration to aged animals reduces disulfide glutathione levels in hippocampus. Mech Ageing Dev127(1): 57–63.
  14. Dringen R. (2005). Oxidative and antioxidative potential of brain microglial cells. Antioxid Redox Signal7(9–10): 1223–33.
  15. Dröge W, Schipper HM. (2007). Oxidative stress and aberrant signaling in aging and cognitive decline. Aging Cell6(3): 361–370.10.1111/j.1474-9726.2007.00294.x197477517517043
  16. Dubovický M, Császár E, Melicherčíková K, Kuniaková M, Račková L. (2014). Modulation of microglial function by the antidepressant drug venlafaxine. Interdiscip Toxicol7(4): 201–7.
  17. Forman HJ, Davies KJ, Ursini F. (2014). How do nutritional antioxidants really work: nucleophilic tone and para-hormesis versus free radical scavenging in vivo. Free Radic Biol Med66: 24–35.
  18. Foster TC, DeFazio RA, Bizon JL. (2012). Characterizing cognitive aging of spatial and contextual memory in animal models. Front Aging Neurosci4: 12.
  19. Friedman J. (2011) Why Is the Nervous System Vulnerable to Oxidative Stress?. In: Gadoth N., Göbel H. (eds) Oxidative Stress and Free Radical Damage in Neurology. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press.10.1007/978-1-60327-514-9_2
  20. Gasparova Z, Janega P, Babal P, Snirc V, Stolc S, Mach M, Ujhazy E. (2009). Effect of the new pyridoindole antioxidant SMe1EC2 on functional deficits and oedema formation in rat hippocampus exposed to ischaemia in vitro. Neuro Endocrinol Lett30: 574–581.
  21. Gasparova Z, Ondrejickova O, Gajdosikova A, Gajdosik A, Snirc V, Stolc S. (2010). Oxidative stress induced by the Fe2+/ascorbic acid system or model ischemia in vitro: Effect of carvedilol and pyridoindole antioxidant SMe1EC2 in young and adult rat brain tissue. Interdiscip Toxicol3: 122–126.
  22. Gasparova Z, Snirc V, Stolc S. (2011). The new pyridoindole antioxidant SMe1EC2 and its intervention in hypoxia/hypoglycemia-induced impairment of longterm potentiation in rat hippocampus. Interdiscip Toxicol4: 56–61.
  23. Gasparova Z, Stara V, Stolc, S. (2014a). Effect of antioxidants on functional recovery after in vitro-induced ischemia and long-term potentiation recorded in pyramidal layer of the CA1 area of rat hippocampus. Gen Physiol Biophys33(1): 43–52.10.4149/gpb_201306223940087
  24. Gasparova Z, Stara V, Janega P, Navarova J, Sedlackova N, Mach M, Ujhazy E. (2014b). Pyridoindole antioxidant-induced preservation of rat hippocampal pyramidal cell number linked with reduction of oxidative stress yet without influence on cognitive deterioration in Alzheimer-like neurode-generation. Neuro Endocrinol Lett35(6): 454–62.
  25. Giorgetti M1, Gibbons JA, Bernales S, Alfaro IE, Drieu La Rochelle C, Cremers T, Altar CA, Wronski R, Hutter-Paier B, Protter AA. (2010). Cognition-enhancing properties of Dimebon in a rat novel object recognition task are unlikely to be associated with acetylcholinesterase inhibition or N-methyl-D-aspartate receptor antagonism. J Pharmacol Exp Ther333(3): 748–57.
  26. Guix F, Wahle T, Vennekens K, Snellinx A, Chávez-Gutiérrez L, Ill-Raga G, Ramos-Fernandez E, Guardia-Laguarta C, Lleó A, Arimon M, Berezovska O, Muñoz FJ, Dotti CG, De Strooper B. (2012). Modification of γ-secretase by nitrosative stress links neuronal ageing to sporadic Alzheimer’s disease. EMBO Mol Med4(7): 660–673.
  27. Halliwell B, Gutteridge JM. (1989). Free Radicals in Biology and Medicine, second ed. Clarendon Press, Oxford.
  28. Harman D. (1992). Free radical theory of aging. Mutat Res. 275: 257–66.
  29. Jung T, Bader N, Grune T. (2007). Lipofuscin: formation, distribution, and metabolic consequences. Ann N Y Acad Sci1119: 97–111.10.1196/annals.1404.00818056959
  30. Juranek I, Horakova L, Rackova L, Stefek M. (2010). Antioxidants in treating pathologies involving oxidative damage: an update on medicinal chemistry and biological activity of stobadine and related pyridoindoles. Curr Med Chem17: 552–570.10.2174/09298671079041631720015031
  31. Juranek I, Rackova L, Stefek M. (2012). Stobadine – an indole type alternative to the phenolic antioxidant reference trolox: chapter 19. In Biochemistry Edited by Deniz Ekinci, Rijeka: InTech, 443–452.10.5772/32784
  32. Kumar A, Singh A. (2015). A review on mitochondrial restorative mechanism of antioxidants in Alzheimer’s disease and other neurological conditions. Front Pharmacol6: 206.
  33. Martin WR, Ye FQ, Allen PS. (1998). Increasing striatal iron content associated with normal aging. Mov Disord13: 281–286.
  34. Mrvová N, Škandík M, Kuniaková M, Račková L. (2015). Modulation of BV-2 microglia functions by novel quercetin pivaloyl ester. Neurochem Int90: 246–54.
  35. Norden DM, Godbout JP. (2013). Microglia of the Aged Brain: Primed to be Activated and Resistant to Regulation. Neuropathol Appl Neurobiol39(1): 19–34.
  36. Oenzil F, Kishikawa M, Mizuno T, Nakano M. (1994). Age-related accumulation of lipofuscin in three different regions of rat brain. Mech Ageing Dev76: 157–63.10.1016/0047-6374(94)91590-3
  37. Pfizer. Amyloid Imaging And Safety Study Of Subcutaneous Bapineuzumab In Subjects With Mild to Moderate Alzheimer’s Disease (SUMMIT AD) NCT01254773
  38. Račková L, Ergin V, Burcu Bali E, Kuniaková M, Karasu Ç. (2014). Pomegranate Seed Oil Modulates Functions and Survival of BV-2 Microglial Cells in vitro. Int J Vitam Nutr Res84(5–6): 295–309.
  39. Rackova L, Snirc V, Jung T, Stefek M, Karasu C, Grune T. (2009). Metabolism induced oxidative stress is a mediator of glucose toxicity in HT22 neuronal cells. Free Radic Res43: 876–886.
  40. Rackova L, Snirc V, Majekova M, Majek P, Stefek M. (2006). Free radical scavenging and antioxidant activities of substituted hexahydropyridoindoles. Quantitative structure-activity relationships. J Med Chem49: 2543–2548.
  41. Rackova L, Stefek M, Majekova M. (2002). Structural aspects of antioxidant activity of substituted pyridoindoles. Redox Rep7(4): 207–214.10.1179/135100002125000578
  42. Rapp PR, Gallagher M. (1996). Preserved neuron number in the hippocampus of aged rats with spatial learning deficits. Proc Natl Acad Sci USA93(18): 9926–9930.10.1073/pnas.93.18.9926
  43. Rook GA, Steele J, Umar S, Dockrell HM. (1985). A simple method for the solubilisation of reduced NBT, and its use as a colorimetric assay for activation of human macrophages by gamma-interferon. J Immunol Methods82, 161e167.10.1016/0022-1759(85)90235-2
  44. Shoji H, Takao K, Hattori S, Miyakawa T. (2016). Age-related changes in behavior in C57BL/6J mice from young adulthood to middle age. Mol Brain9: 11.
  45. Shukitt-Hale B. (1999). The effects of aging and oxidative stress on psycho-motor and cognitive behavior. Age22: 9–17.10.1007/s11357-999-0002-7
  46. Skoumalova A, Rofina J, Schwippelova Z, Gruys E, Wilhelm J. (2003). The role of free radicals in canine counterpart of senile dementia of the Alzheimer type. J Exp Gerontol38(6): 711–9.10.1016/S0531-5565(03)00071-8
  47. Socci DJ, Crandall BM, Arendash GW. (1995). Chronic antioxidant treatment improves the cognitive performance of aged. Rats Brain Research693: 88–94.
  48. Spitzer N, Sammons GS, Price EM. (2011). Autofluorescent cells in rat brain can be convincing impostors in green fluorescent reporter studies. J Neurosci Methods197(1): 48–55.
  49. Stolc S, Snirc V, Gajdosikova A, Gajdosik A, Gasparova Z, Ondrejickova O, Sotnikova R, Viola A, Rapta P, Jariabka P, Synekova I, Vajdova M, Zacharova S, Nemcek V, Krchnarova V. (2008) New pyridoindoles with antioxidant and neuroprotective actions. In Trends in Pharmacological Research Bauer, V. Ed. Institute of Experimental Pharmacology: Bratislava, 118–136.
  50. Stolc S, Snirc V, Majekova M, Gasparova Z, Gajdosikova A, Stvrtina S. (2006). Development of the new group of indole-derived neuroprotective drugs affecting oxidative stress. Cell Mol Neurobiol26(7–8): 1495–1504.
  51. Terman A, Brunk UT. (2006). Oxidative stress, accumulation of biological ‘garbage’, and aging. Antioxid Redox Signal8: 197–204.
  52. Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR. (2004). Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci5: 863–873.10.1038/nrn153715496864
  53. Zhu Y, Carvey PM, Ling Z. (2006). Age-related changes in glutathione and glutathione-related enzymes in rat brain. Brain Res1090(1): 35–44.
  54. Yamada S, Kumazawa S, Ishii T, Nakayama T, Itakura K, Shibata N, Kobayashi M, Sakai K, Osawa T, Uchida K. (2001). Immunochemical detection of a lipofuscin-like fluorophore derived from malondialdehyde and lysine. J Lipid Res42(8): 1187–96.
  55. Ye SM, Johnson RW. (1999). Increased interleukin-6 expression by microglia from brain of aged mice. J Neuroimmunol93: 139.
DOI: https://doi.org/10.1515/intox-2017-0002 | Journal eISSN: 1337-9569 | Journal ISSN: 1337-6853
Language: English
Page range: 11 - 19
Submitted on: May 13, 2016
Accepted on: Jul 10, 2017
Published on: Feb 14, 2018
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Nataša Mrvová, Martin Škandík, Štefan Bezek, Natália Sedláčková, Mojmír Mach, Zdenka Gaspárová, Dominika Luptáková, Ivan Padej, Lucia Račková, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.