Have a personal or library account? Click to login
The Effect of Exports on Carbon Dioxide Emissions: Policy Implications Cover

The Effect of Exports on Carbon Dioxide Emissions: Policy Implications

By: Mpho Bosupeng  
Open Access
|Oct 2016

References

  1. Alshehry, A. S., Belloumi, M. (2015), Energy consumption, carbon dioxide emissions and economic growth: the case of Saudi Arabia, Renewable and Sustainable Energy Reviews, Vol. 41, pp. 237–247, doi.org/10.1016/j.rser.2014.08.004
  2. Asemota, O. M., Bala, D. A. (2011), A Kalman Filter approach to Fisher effect: Evidence from Nigeria, CBN Journal of Applied Statistics, Vol. 2, No. 1, pp. 71–91.
  3. Caporale, G. M., Pittis, N. (1999), Efficient estimation of cointegrating vectors and testing for causality in vector autoregression., Journal of Economic Issues, Vol. 13, pp. 3–35.
  4. Chang, Ch-P., Berdiev, A. N., Lee, Ch-Chi. (2013), Energy exports, globalization and economic growth: The case of South Caucasus, Economic Modelling, Vol. 33, pp. 383–346.
  5. Deng, W., Chen, D., Huang, M., Hu, J., Chen, L. (2015), Carbon dioxide deliming in leather production: a literature review, Journal of Cleaner Production, Vol. 87, pp. 26–38.
  6. Dickey, D. A., Fuller, W. A. (1979), Distribution of the estimators for autoregressive time series with a unit root, Journal of the American Statistical Association, Vol. 74, No. 366, pp. 427–431.
  7. Elliott, G. (1998), On the robustness of cointegration methods when regressors almost have a unit root, Econometrica, Vol. 66, No. 1, pp. 149–158, doi:10.2307/2998544.10.2307/2998544
  8. Engle, R. F., Granger, C. W. (1987), Cointegration and error correction: representation, estimation, and testing, Econometrica, Vol. 55, No. 2, pp. 251–276, doi:10.2307/191323610.2307/1913236
  9. Granger, C. W. (1981), Some properties of time series data and their use in econometric model specification, Journal of Econometrics, Vol. 55, pp. 251–276, doi:10.1016/0304–4076(81)90079–810.1016/0304-4076(81)90079-8
  10. Granger, C. W. J. (1969), Investigating causal relations by econometric models: cross spectral methods,. Econometrica, Vol. 37, No. 3, pp. 424–438, doi:10.2307/191279110.2307/1912791
  11. Granger, C. W. J., Weiss, A. A. (1983), Time series analysis of error correction models, in: S. Karlim, T. Amemiya, L. A. Goodman, Studies in Economic Time Series and Multivariate Statistics, Academic Press, New York, doi:10.1016/b978-0–12–398750–1.50018–810.1016/B978-0-12-398750-1.50018-8
  12. Granger, C. W. J., Engle, R. F. (1985), Dynamic model specification with equilibrium constraints, University of California, San Diego.
  13. Gregg, J. S., Andre, R. J., Marland, G. (2008), China: emissions pattern of the world leader in CO2 emissions from fossil fuels consumption and cement production, Geophysical Research Letters, Vol. 35, LO8806, available at: http://www.theglobaleconomy.com/, accessed: October 10, 2015.
  14. Hovarth, W., Watson, M. (1995), Testing for cointegration when some of the cointegrating vectors are prespecified, Econometric Theory, Vol. 11, No. 5, pp. 984–1014, doi:10.1017/s026646660000994410.1017/S0266466600009944
  15. Jafari, Y., Othman, J., Nor Abu, H. S M. (2012), Energy consumption, economic growth and environmental pollutants in Indonesia, Journal of Policy Modelling, Vol. 34, pp. 879–889.
  16. Johansen, S. (1988), Statistical analysis of cointegration vectors, Journal of Economic Dynamics and Control, Vol. 12, pp. 231–254, doi:10.1016/0165–1889(88)90041–310.1016/0165-1889(88)90041-3
  17. Johansen, S. (1991), Estimation and hypothesis testing of cointegration vectors in Gaussian Vector Autoregressive models, Econometrica, Vol. 59, No. 6, pp. 1551–1580, doi:10.2307/293827810.2307/2938278
  18. Johansen, S., Juselius, K. (1990), Maximum likelihood estimation and inference on cointegration with applications to the demand for money, Oxford Bulletin of Economics and Statistics, Vol. 52, No. 2, pp. 169–210, doi:10.1111/j.1468–0084.1990.mp52002003.x10.1111/j.1468-0084.1990.mp52002003.x
  19. Kahrl, F., Roland-Holst, D. (2008), Energy and exports in China, China Economic Review, Vol. 19, pp. 649–658.
  20. Lee, J. W., Brahmasrene, T. (2013), Investigating the influence of tourism on economic growth and carbon emissions: evidence from panel analysis of the European Union, Tourism Management, Vol. 38, pp. 69–76, dx.doi.org/10.1016/j.tourman.2013.02.016
  21. Loganathan, N., Shabaz, M., Taha, R. (2014), The link between green taxation and economic growth on CO2 emissions: fresh evidence from Malaysia, Renewable and Sustainable Energy Review, Vol. 38, pp. 1083–1091, dx.doi.org/10.1016/j.rser.2014.07.057
  22. Mavrotas, G., Kelly, R. (2001), Old wine in new bottle: testing causality between savings and growth, The Manchester School Supplement, pp. 97–105.
  23. Omri, A. (2013), CO2 emissions, energy consumption and economic growth in MENA countries: evidence from simultaneous equation models, Energy Economics, Vol. 40, pp. 657–664, dx.doi.org/10.1016/j.eneco.2013.09.003
  24. Park, J. Y. (1990), Testing for unit roots and cointegration by variable addition, Advances in Econometrics, Vol. 8, pp. 107–133.
  25. Park, J. Y. (1992), Canonical cointegration regression, Econometrica, Vol. 60, pp.119–144.
  26. Phillips, P. C. B., Durlauf, S. N. (1986), Multiple time series regression with integrated processes. Review of Economic Studies, Vol. 53, pp. 473–495, doi:10.2307/229760210.2307/2297602
  27. Phillips, P. C. B., Hansen, B. E (1990), Statistical inference in instrumental variable with I (1) processes, Review of Economic Studies, Vol. 57, pp. 99–125, doi:10.2307/229754510.2307/2297545
  28. Phillips, P. C. B., Ouilaris, S. (1986), Testing for cointegration, Cowles Foundation Discussion Paper, No. 809.
  29. Phillips, P. C. B., Park, J. Y. (1986), Asymptotic equivalence of OLS and GLS in regression with integrated regressors, Cowles Foundation Discussion Paper, No. 802.
  30. Phillips, P. C. B., Perron, P. (1988), Testing for a unit root in time series regression, Biometrika, Vol. 75, No. 2, pp. 335–346, doi:10.2307/233618210.2307/2336182
  31. Rambaldi, A. N. (1997), Mutliple time series models and testing for causality and exogeneity: a review, Working Papers in Econometrics and Applied Statistics, No. 96. Department of Econometrics, University of New England.
  32. Rambaldi, A. N., Doran, H. E. (1996), Testing for Granger non-causality in cointegrated systems made easy, Working Papers in Econometrics and Applied Statistics, No. 88. Department of Econometrics, University of New England.
  33. Saikkonen, P. (1992), Estimation and testing of cointegrated systems by an autoregressive approximation, Econometric Theory, Vol. 8, No. 1, pp. 1–27, doi: 10.1017/s026646660001072010.1017/S0266466600010720
  34. Saikkonen, P., Lütkepohl, H. (2000a), Testing for the cointegrating rank of a VAR process with an intercept, Economic Theory, Vol. 16, pp. 373–406.10.1017/S0266466600163042
  35. Saikkonen, P., Lütkepohl, H. (2000b), Testing for the cointegrating rank of a VAR process with structural shift, Journal of Business and Economic Statistics, Vol. 18, pp. 451–464.10.1080/07350015.2000.10524884
  36. Soytas, U., Sari, R. (2009), Energy consumption, economic growth, and carbon emissions: challenges faced by an EU candidate member, Ecological Economics, Vol. 68, pp. 1667–1675, doi:10.1016/j.ecolecon.2007.06.01410.1016/j.ecolecon.2007.06.014
  37. Stock, J. H. (1987), Asymptotic properties of least squares estimates of cointegration vectors. Econometrica, Vol. 55, No. 5, pp. 1035–1056, doi:10.2307/191126010.2307/1911260
  38. Stock, J. H., Watson, M. W. (1987), Testing for common trends, Working Paper in Econometrics, Hoover Institution, Stanford, CA.
  39. Toda., H. Y., Yamamoto, T. (1995), Statistical inference in vector autoregressions with possibly integrated processes, Journal of Econometrics, Vol. 66, pp. 225–250.
  40. Wang, C. (2013), Differential output growth across regions and carbon dioxide emissions: evidence from U.S. and China. Energy, Vol. 53, pp. 230–236, dx.doi.org/10.1016/j.energy.2013.02.04410.1016/j.energy.2013.02.044
  41. Wolde-Rufael, Y. (2005), Energy demand and economic growth: the African experience, Journal of Policy Modeling, Vol. 27, pp. 891–903, doi:10.1016/j.jpolmod.2005.06.00310.1016/j.jpolmod.2005.06.003
  42. Xu, B., Lin, B. (2015), Carbon dioxide emissions reduction in China’s transport sector: a dynamic VAR (Vector Autoregression) approach. Energy, Vol. 83, pp. 486–495.10.1016/j.energy.2015.02.052
  43. Zapata, H, O., Rambaldi, A. N. (1997), Monte Carlo evidence on cointegration and causation. Oxford Bulletin of Economics and Statistics, Vol. 59, pp. 285–298.10.1111/1468-0084.00065
  44. Zhang, X.-P., Cheng, X.–M. (2009), Energy consumption, carbon emissions and economic growth in China. Ecological Economics, Vol. 68, pp. 2706–2712, doi:10.1016/j.ecolecon.2009.05.01110.1016/j.ecolecon.2009.05.011
  45. Zhixin, Z., Ya, L. (2011), The impact of carbon dioxide on economic growth in China. Energy Procedia, Vol. 5, pp. 1757–1761, doi:10.1016/j.egypro.2011.03.29910.1016/j.egypro.2011.03.299
DOI: https://doi.org/10.1515/ijme-2016-0017 | Journal eISSN: 2543-5361 | Journal ISSN: 2299-9701
Language: English
Page range: 20 - 32
Published on: Oct 8, 2016
Published by: Warsaw School of Economics
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Mpho Bosupeng, published by Warsaw School of Economics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.