Have a personal or library account? Click to login
How to Stay Ahead of the Pack: Optimal Road Cycling Strategies for two Cooperating Riders Cover

How to Stay Ahead of the Pack: Optimal Road Cycling Strategies for two Cooperating Riders

By: S. Wolf and  D. Saupe  
Open Access
|Nov 2017

References

  1. Aftalion, A., & Fiorini, C. (2015). A two-runners model: optimization of running strategies according to the physiological parameters. arXiv preprint arXiv:1508.00523.
  2. Barry, N., Sheridan, J., Burton, D., & Brown, N. A. (2014). The effect of spatial position on the aerodynamic interactions between cyclists. Procedia Engineering, 72, 774-779.10.1016/j.proeng.2014.06.131
  3. Dahmen, T., Byshko, R., Saupe, D., Röder, M., & Mantler, S. (2011). Validation of a model and a simulator for road cycling on real tracks. Sports Engineering, 14(2-4), 95-110.10.1007/s12283-011-0076-1
  4. Dahmen, T., & Saupe, D. (2014). Optimal pacing strategy for a race of two competing cyclists. Journal of science and cycling, 3(2), 12.
  5. Dahmen, T., Wolf, S., & Saupe, D. (2012). Applications of mathematical models of road cycling. IFAC Proceedings Volumes, 45(2), 804-809.10.3182/20120215-3-AT-3016.00142
  6. Gordon, S. (2005). Optimising distribution of power during a cycling time trial. Sports Engineering, 8(2), 81-90.10.1007/BF02844006
  7. Kyle, C. R. (1979). Reduction of wind resistance and power output of racing cyclists and runners travelling in groups. Ergonomics, 22(4), 387-397.10.1080/00140137908924623
  8. Martin, J. C., Milliken, D. L., Cobb, J. E., McFadden, K. L., & Coggan, A. R. (1998). Validation of a mathematical model for road cycling power. Journal of applied biomechanics, 14, 276-291.10.1123/jab.14.3.27628121252
  9. Martin, J. C., Davidson, C. J., & Pardyjak, E. R. (2007). Understanding sprint-cycling performance: the integration of muscle power, resistance, and modeling. International journal of sports physiology and performance, 2(1), 5-21.10.1123/ijspp.2.1.519255451
  10. Monod, H., & Scherrer, J. (1965). The work capacity of a synergic muscular group. Ergonomics, 8(3), 329-338.10.1080/00140136508930810
  11. Morton, R. H. (1996). A 3-parameter critical power model. Ergonomics, 39(4), 611-619.10.1080/001401396089644848854981
  12. Morton, R. H. (1986). A three component model of human bioenergetics. Journal of mathematical biology, 24(4), 451-466.10.1007/BF012368923805905
  13. Olds, T. (1998). The mathematics of breaking away and chasing in cycling. European journal of applied physiology and occupational physiology, 77(6), 492-497.10.1007/s0042100503659650732
  14. Patterson, M. A., & Rao, A. V. (2014). GPOPS-II: A MATLAB software for solving multiple-phase optimal control problems using hp-adaptive Gaussian quadrature collocation methods and sparse nonlinear programming. ACM Transactions on Mathematical Software (TOMS), 41(1), 1.10.1145/2558904
  15. Pitcher, A. B. (2009). Optimal strategies for a two-runner model of middle-distance running. SIAM Journal on Applied Mathematics, 70(4), 1032-1046.10.1137/090749384
  16. Sundström, D., Carlsson, P., & Tinnsten, M. (2014). Comparing bioenergetic models for the optimisation of pacing strategy in road cycling. Sports Engineering, 17(4), 207-215.10.1007/s12283-014-0156-0
Language: English
Page range: 88 - 100
Published on: Nov 30, 2017
Published by: International Association of Computer Science in Sport
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2017 S. Wolf, D. Saupe, published by International Association of Computer Science in Sport
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.