Have a personal or library account? Click to login
Linear and Nonlinear Prediction Models Show Comparable Precision for Maximal Mean Speed in a 4x1000 m Field Test Cover

Linear and Nonlinear Prediction Models Show Comparable Precision for Maximal Mean Speed in a 4x1000 m Field Test

By: J. M. Jäger,  J. Kurz and  H. Müller  
Open Access
|Nov 2017

References

  1. Abut, F., & Akay, M. F. (2015). Machine learning and statistical methods for the prediction of maximal oxygen uptake: recent advances. Medical Devices: Evidence and Research, 8, 369-379. doi: 10.2147/MDER.S57281
  2. Akay, M. F., Zayid, E. I. M., Aktürk, E., & George, J. D. (2011). Artificial neural networkbased model for predicting VO2max from a submaximal exercise test. Expert Systems with Applications, 38, 2007-2010. doi: 10.1016/j.eswa.2010.07.135
  3. ACSM. (2011). Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Medicine & Science in Sports & Exercise, 43(7), 1334-1359. doi: 10.1249/MSS.0b013e318213fefb
  4. Black, N. E., Vehrs, P. R., Fellingham, G. W., George, J. D., & Hager, R. (2016) Prediction of VO2max in Children and Adolescents Using Exercise Testing and Physical Activity Questionnaire Data. Research Quarterly for Exercise and Sport, 87(1), 89-100, doi: 10.1080/02701367.2015.1124969
  5. Bird, S. R., Theakston, S. C., Owen, A. & Nevill, A. M. (2003). Characteristics Associated With 10-km Running Performance Among a Group of Highly Trained Male Endurance Runners Age 21-63 Years. Journal of Aging and Physical Activity, 11, 333-350. doi: 10.1123/japa.11.3.333
  6. Breiman, L. (2001). Random forests. Machine learning, 45, 5-32. 10.1023/A:1010933404324
  7. Darr, K. C, Bassett, D. R, Morgan, B. J., Thomas, D. P. (1988). Effects of age and training status on heart rate recovery after peak exercise. American Journal of Physiol, 254(2), H340-343.10.1152/ajpheart.1988.254.2.H3403344824
  8. Deuster, P., & Heled, Y. (2008). Testing for maximal aerobic power. In P. H. Seidenberg, & A. I. Beutler (Eds.), The sports medicine resource manual (pp. 520-528). Philadelphia: Elsevier. doi: 10.1016/B978-141603197-0.10069-2
  9. Dimpka, U. (2009). Post-exercise heart rate recovery: an index of cardiovascular fitness. Journal of Exercise Physiology online, 12(1), 19-22.
  10. Edelmann-Nusser, J., Hohmann, A., & Henneberg, B. (2002). Modeling and Prediction of Competitive Performance in Swimming Upon Neural Networks. European Journal of Sport Science, 2(2) [electronic resource].10.1080/17461390200072201
  11. Günther, F., & Fritsch, S. (2010). neuralnet: Training of neural networks. The R Journal, 1(2), 30-38.10.32614/RJ-2010-006
  12. Haff, G. G., & Dumke, C. (2012). Laboratory manual for exercise physiology. Champain, IL: Human Kinetics.
  13. Held, T. (2000). Überprüfung der Ausdauerleistungsfähigkeit. Der 4x1000-m-Lauftest (mobilepraxis) [Assessing endurance performance. The 4x1000-m-Test]. mobile - Die Fachzeitschrift für Sport, 6, 5-9.
  14. Held, T., Steiner, R., Hübner, K., Tschopp, M., Peltola, K., & Marti, B. (2000). Selbst gewählte submaximale Laufgeschwindigkeiten als Prädiktoren des Dauerleistungsvermögens [Selft-selected submaximal running velocities as predictors of endurance capacity]. Schweizerische Zeitschrift für Sportmedizin und
  15. Sporttraumatologie, 2(48), 64-69.
  16. Jäger, J. M., Kurz, J., & Müller, H. (2016). Predicting maximum speed in a 4x1000 m FieldTest based on estimated VO2max values from Shuttle Run Test and Queens College Step Test. In D. Saupe, T. Dahmen, C. Widmann, I. Baiker, M. Gratkowski, S. Wolf, & R. Bertschinger (Eds.), Proceedings dvs-Workshop Modelling in Endurance Sports (pp. 20-24). Konstanz: Universität Konstanz. URI http://nbnresolving.de/urn:nbn:de:bsz:352-0-371586
  17. Kattan, A., Abdullah, R., & Geem, Z. W. (2011). Artificial neural network training and software implementation techniques. New York: Nova Science.
  18. Léger, L. A., & Lambert, J. (1982). A maximal multistage 20-m shuttle run test to predict VO2max. European Journal of Applied Physiology, 49(1), 1-12.10.1007/BF004289587201922
  19. Léger, L. A., Mercier, D., Gadoury, C., & Lambert, J. (1988). The multistage 20 metre shuttle run test for aerobic fitness. Journal of Sports Sciences, 6(2), 93-101. doi: 10.1080/02640418808729800
  20. Marshall, M. R., Coe, D. P., & Pivarnik, J. M. (2014). Development of a Prediction Model to Predict VO2peak in Adolescent Girls Using the Bruce Protocol to Exhaustion. Research Quarterly for Exercise and Sport, 85(2), 251-256, doi: 10.1080/02701367.2014.893053
  21. Mayorga-Vega, D., Aguilar-Soto, P., & Viciana, J. (2015). Criterion-Related Validity of the 20-M Shuttle Run Test for Estimating Cardiorespiratory Fitness: A Meta-Analysis. Journal of Sports Science and Medicine, 14(3), 536-547.
  22. Maszczyk, A., Rocznoik, R., Waskiewicz, Z., Czuba, M., Mikolajec, K., Zajac, A. & Stanula, A. (2012). Application of regression and neural models to predict competitive swimming performance. Perceptual and Motor Skills, 114(2), 610-626. doi: 10.2466/05.10.PMS.114.2.610-626
  23. Maszczyk, A., Zajac, A., & Ryguła, I. (2011). A neural network model approach to athlete selection. Sports Engineering, 13(2), 83-93. doi: 10.1007/s12283-010-0055-y
  24. McArdle, W. D., Katch, F. I., Pechar, G. S., Jacobson, L., & Ruck, S. (1972). Reliability and interrelationships between maximal oxygen intake, physical work capacity and steptest scores in college women. Medicine & Science in Sports & Exercise, 4(4), 182-186. doi: 10.1249/00005768-197200440-00019
  25. McLaughlin, J. E., Howley, E. T., Bassett Jr., D. R., Thompson, D. L., & Fitzhugh, E. C. (2010). Test of the Classic Model for Predicting Endurance Running Performance. Medicine & Science in Sports & Exercise, 42(5), 991-997. doi: 10.1249/MSS.0b013e3181c0669d
  26. Newsholme, E. A., Blomstrand, E., & Ekblom, B. (1992). Physical and mental fatigue: Metabolic mechanisms and importance of plasma amino acids. British medical bulletin, 48(3), 477-495.10.1093/oxfordjournals.bmb.a0725581360309
  27. O’Brian, R. M. (2007). A caution regarding rules of thumb for variance inflation factors. Quality & Quantity, 41, 673-690. doi: 10.1007/s11135-006-9018-6
  28. Schöllhorn, W. I., Jäger, J. M., & Janssen, D. (2008). Artificial neural network models of sports motion. In Y. Hong, & R. Bartlett, Handbook of Biomechanics and Human Movement Science (pp. 50-64). London: Routledge.
  29. Shave, R., & Franco, A. (2006). The physiology of endurance training. In G. P. Whyte, The physiology of training (pp. 61-84). Philadelphia, PA: Elsevier.
  30. Stickland, M. K., Petersen, S. R., & Bouffard, M. (2003). Prediction of maximal aerobic power from the 20-m multi-stage shuttle run test. Canadian Journal of Applied Physiology, 2(28), 272-282.10.1139/h03-02112825335
  31. van Someren, K. A. (2006). The physiology of anaerobic endurance training. In G. P. Whyte, The physiology of training (pp. 85-115). Philadelphia, PA: Elsevier.
  32. Verikas, A., Gelzinis, A., & Bacauskiene, M. (2011). Mining data with random forests: A survey and results of new tests. Pattern recognition, 44, 330-349.10.1016/j.patcog.2010.08.011
  33. R Core Team. (2016). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
  34. Ramsbottom, R., Brewer, J., & Williams, C. (1988). A progressive shuttle run test to estimate maximal oxygen uptake. British Journal of Sports Medicine, 22(4), 141-144.10.1136/bjsm.22.4.14114787283228681
  35. Takeshima, N., & Tanaka, K. (1995). Prediction of endurance running performance for middle-aged and older runners. British Journal of Sports Medicine, 29(1), 20-23. doi: 10.1136/bjsm.29.1.20
Language: English
Page range: 78 - 87
Published on: Nov 30, 2017
Published by: International Association of Computer Science in Sport
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2017 J. M. Jäger, J. Kurz, H. Müller, published by International Association of Computer Science in Sport
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.