Have a personal or library account? Click to login
Network structure of UEFA Champions League teams: association with classical notational variables and variance between different levels of success Cover

Network structure of UEFA Champions League teams: association with classical notational variables and variance between different levels of success

Open Access
|Jul 2017

References

  1. Armatas, V., Yiannakos, A., Zaggelidis, G., Papadopoulou, S., & Fragkos, N. (2009). Goal scoring patterns in Greek top leveled soccer matches. Journal of Physical Education and Sport, 23(2), 1–5.
  2. Bourbousson, J., Sève, C., & McGarry, T. (2010). Space-time coordination dynamics in basketball: Part 2 The interaction between the two teams. Journal of Sports Sciences, 28(3), 349–358. Journal Article.10.1080/0264041090350364020131144
  3. Carling, C., Williams, A. M., & Reilly, T. (2005). Handbook of Soccer Match Analysis: A Systematic Approach to Improving Performance. Book, London & New York: Taylor & Francis Group.
  4. Clemente, F. M., Couceiro, M. S., Martins, F. M. L., Mendes, R. S., & Figueiredo, A. J. (2014). Practical Implementation of Computational Tactical Metrics for the Football Game: Towards an Augmenting Perception of Coaches and Sport Analysts. In Murgante, Misra, Rocha, Torre, Falcão, Taniar, … Gervasi (Eds.), Computational Science and Its Applications (pp. 712–727). Springer.
  5. Clemente, F. M., Martins, F. M. L., Kalamaras, D., Wong, D. P., & Mendes, R. S. (2015). General network analysis of national soccer teams in FIFA World Cup 2014. International Journal of Performance Analysis in Sport, 15(1), 80–96.10.1080/24748668.2015.11868778
  6. Clemente, F. M., Martins, F. M. L., & Mendes, R. S. (2016). Social Network Analysis Applied to Team Sports Analysis. Netherlands: Springer International Publishing. http://doi.org/10.1007/978-3-319-25855-310.1007/978-3-319-25855-3
  7. Duarte, R., Araújo, D., Correia, V., & Davids, K. (2012). Sports Teams as Superorganisms: Implications of Sociobiological Models of Behaviour for Research and Practice in Team Sports Performance Analysis. Sports Medicine, 42(8), 633–642.10.1007/BF03262285
  8. Duch, J., Waitzman, J. S., & Amaral, L. A. (2010). Quantifying the performance of individual players in a team activity. PloS One, 5(6), e10937.10.1371/journal.pone.0010937288683120585387
  9. Fagiolo, G. (2007). Clustering in complex directed networks. Physical Review E, 76(2), 26107. http://doi.org/10.1103/PhysRevE.76.02610710.1103/PhysRevE.76.02610717930104
  10. Ferguson, C. J. (2009). An effect size primer: A guide for clinicians and researchers. Professional Psychology: Research and Practice, 40(5), 532–538.10.1037/a0015808
  11. Gréhaigne, J. F., Bouthier, D., & David, B. (1997). Dynamic-system analysis of opponent relationship in collective actions in football. Journal of Sports Sciences, 15(2), 137–149.10.1080/0264041973674169258844
  12. Grund, T. U. (2012). Network structure and team performance: The case of English Premier League soccer teams. Social Networks, 34(4), 682–690.10.1016/j.socnet.2012.08.004
  13. Hopkins, K. D., Hopkins, B. R., & Glass, G. V. (1996). Basic statistics for the behavioral sciences. Book, Boston: Allyn and Bacon.
  14. Hughes, M. D., & Bartlett, R. M. (2002). The use of performance indicators in performance analysis. Journal of Sports Sciences, 20(10), 739–754.10.1080/02640410232067560212363292
  15. Hughes, M., & Franks, I. (2005). Analysis of passing sequences, shots and goals in soccer. Journal of Sports Sciences, 23(5), 509–514.10.1080/0264041041000171677916194998
  16. Hughes, M., & Franks, M. (2004). Notational analysis of sport. London, UK: Routledge.
  17. Jonsson, G. K., Anguera, M. T., Blanco-Villaseñor, Á., Losada, J. L., Hernández-Mendo, A., Ardá, T., … Castellano, J. (2006). Hidden patterns of play interaction in soccer using SOF-CODER. Behavior Research Methods, 38(3), 372–381.10.3758/BF03192790
  18. Kalamaras, D. (2014). Social Networks Visualizer (SocNetV): Social network analysis and visualization software. Social Networks Visualizer. Online Multimedia, Homepage: http://socnetv.sourceforge.net.
  19. Lago-Ballesteros, J., & Lago-Peñas, C. (2010). Performance in Team Sports: Identifying the Keys to Success in Soccer. Journal of Human Kinetics, 25, 85–91. http://doi.org/10.2478/v10078-010-0035-010.2478/v10078-010-0035-0
  20. Lago-Peñas, C., & Lago-Ballesteros, J. (2011). Game location and team quality effects on performance profiles in professional soccer. Journal of Sports Science and Medicine, 10, 465–471.
  21. Lusher, D., Robins, G., & Kremer, P. (2010). The application of social network analysis to team sports. Measurement in Physical Education and Exercise Science, 14(4), 211–224.10.1080/1091367X.2010.495559
  22. Memmert, D., & Perl, J. (2009). Game creativity analysis using neural networks. Journal of Sports Sciences, 27(2), 139–149.10.1080/0264041080244200719058086
  23. Passos, P., Davids, K., Araújo, D., Paz, N., Minguéns, J., & Mendes, J. (2011). Networks as a novel tool for studying team ball sports as complex social systems. Journal of Science and Medicine in Sport, 14(2), 170–176.10.1016/j.jsams.2010.10.45921145787
  24. Peña, J. L., & Touchette, H. (2012). A network theory analysis of football strategies. In C. Clanet (Ed.), Sports Physics: Proc. 2012 Euromech Physics of Sports Conference (pp. 517–528). Conference Proceedings, Palaiseau, France: “Editions de l”’Ecole Polytechnique, Palaiseau.
  25. Robinson, G., & O’Donoghue, P. (2007). A weighted kappa statistic for reliability testing in performance analysis of sport. International Journal of Performance Analysis in Sport, 7(1), 12–19.10.1080/24748668.2007.11868383
  26. Sarmento, H., Marcelino, R., Anguera, M. T., Campaniço, J., Matos, N., & Leitão, J. C. (2014). Match analysis in football: a systematic review. Journal of Sports Sciences, 32(20), 1831–1843. http://doi.org/10.1080/02640414.2014.89885210.1080/02640414.2014.89885224787442
  27. Scoulding, A., James, N., & Taylor, J. (2004). Passing in the Soccer World Cup 2002. International Journal of Performance Analysis in Sport, 4(2), 36–41.10.1080/24748668.2004.11868302
  28. Tenga, A., Holme, I., Ronglan, L. T., & Bahr, R. (2010). Effect of playing tactics on achieving score-box possessions in a random series of team possessions from Norwegian professional soccer matches. Journal of Sports Sciences, 28(3), 245–255. http://doi.org/10.1080/0264041090350276610.1080/0264041090350276620391096
  29. Tenga, A., & Sigmundstad, E. (2011). Characteristics of goal-scoring possessions in open play: Comparing the top, in-between and bottom teams from professional soccer league. International Journal of Performance Analysis in Sport, 11(3), 545–552.10.1080/24748668.2011.11868572
  30. Travassos, B., Davids, K., Araújo, D., & Esteves, P. T. (2013). Performance analysis in team sports : Advances from an Ecological Dynamics approach. International Journal of Performance Analysis in Sport, 13(1), 83–95.10.1080/24748668.2013.11868633
  31. Vilar, L., Araújo, D., Davids, K., & Bar-Yam, Y. (2013). Science of winning football: emergent pattern-forming dynamics in association football. Journal of Systems Science and Complexity, 26, 73–84.10.1007/s11424-013-2286-z
  32. Vilar, L., Araújo, D., Davids, K., & Button, C. (2012). The Role of Ecological Dynamics in Analysing Performance in Team Sports. Sports Medicine, 42(1), 1–10. http://doi.org/10.2165/11596520-000000000-0000010.2165/11596520-000000000-0000022149695
  33. Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. Book, New York, USA: Cambridge University Press.10.1017/CBO9780511815478
Language: English
Page range: 39 - 50
Published on: Jul 22, 2017
Published by: International Association of Computer Science in Sport
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2017 F. M. Clemente, F. M. L. Martins, published by International Association of Computer Science in Sport
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.