Have a personal or library account? Click to login
A Comparison of Simplified Two-dimensional Flow Models Exemplified by Water Flow in a Cavern Cover

A Comparison of Simplified Two-dimensional Flow Models Exemplified by Water Flow in a Cavern

By: Dzmitry Prybytak and  Piotr Zima  
Open Access
|Apr 2018

References

  1. Andrews J. M., McLone R. R. (1976) Mathematical modeling, London, Butterworths.
  2. Banerjee P. K., Butterfield R. (1981) Boundary Element Methods in Engineering Science, McGraw-Hill, London, New York.
  3. Brebbia C. A., Telles J. C. F., Wrobel L. C. (1984) Boundary Element Techniques. Theory and Application in Engineering, Springer-Verlag, Berlin. Heidelberg, New York, Tokio.10.1007/978-3-642-48860-3
  4. Cheng A., Cheng D. (2005) Heritage and early history of the boundary element method, Engineering Analysis with Boundary Elements, 29, brak numerów stron, jesli to czasopismo.10.1016/j.enganabound.2004.12.001
  5. Erturk E., Corke T. C., Gokcol C. (2005) Numerical Solutions of 2-D Steady Incompressible Driven Cavity Flow at High Reynolds Numbers, International Journal for Numerical Methods in Fluids, 48 (7), 747–774.10.1002/fld.953
  6. Hahn M. (2013) Master’s thesis: Investigation of the boundary integral method for Stokes flow, University of Bayreuth, Bayreuth.
  7. Hirsch C. (1990) Numerical Computation of Internal and External Flows, volume 2: Computational Methods for Inviscid and Viscous Flows, Wiley, Hoboken.
  8. Issa R. I. (1985) Solution of the Implicitly Discretized Fluid Flow Equations by Operator-Splitting, Journal of Computational Physics, 62, 40–65.10.1016/0021-9991(86)90099-9
  9. Landau L. D., Lifshitz E. M. (1959) Fluid Mechanics (Volume 6 of A Course of Theoretical Physics), Pergamon Press.
  10. LeVeque R. (1990) Numerical Methods for Conservation Laws, ETH Lectures in Mathematics Series, Birkhauser-Verlag.10.1007/978-3-0348-5116-9
  11. LeVeque R. (2002) Finite Volume Methods for Hyperbolic Problems, Cambridge University Press.10.1017/CBO9780511791253
  12. Lisicki M. (2013) Four approaches to hydrodynamic Green’s functions – the Oseen tensors, Institute of Theoretical Physics, Faculty of Physics, University of Warsaw.
  13. Meerschaert M. M. (2007) Mathematical Modeling, 3rd ed., Elservier Science.
  14. Pozrikidis C. (1992) Boundary Integral and Singularity Methods for Linearized Viscous Flow, Cambridge University Press, Peter Phillips, Cambridge.10.1017/CBO9780511624124
  15. Tannehill J. C. et al (1997) Computational Fluid Mechanics and Heat Transfer, 2nd ed., Taylor and Francis.
  16. Zienkiewicz O. C., Taylor R. L. (2000) The Finite Element Method, Vol. 3. Fluid Dynamics, Butterworth-Heinemann.
DOI: https://doi.org/10.1515/heem-2017-0009 | Journal eISSN: 2300-8687 | Journal ISSN: 1231-3726
Language: English
Page range: 141 - 154
Submitted on: Sep 6, 2016
Published on: Apr 4, 2018
Published by: Polish Academy of Sciences, Institute of Hydro-Engineering
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2018 Dzmitry Prybytak, Piotr Zima, published by Polish Academy of Sciences, Institute of Hydro-Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.