Have a personal or library account? Click to login
Rayleigh Waves Transformation in Liquefying Water-saturated Sands Cover
Open Access
|Apr 2017

References

  1. Achenbach J. D. (1973) Wave Propagation in Elastic Solids, North-Holland, Amsterdam.
  2. Bažant Z. P., Krizek R. J. and Shieh C. L. (1983) Histeretic endochronic theory for sand, Proc. ASCE, J. Eng. Mech., 109 (4), 1073–1095.10.1061/(ASCE)0733-9399(1983)109:4(1073)
  3. Biot M. A. (1955) Theory of elasticity and consolidation for a porous anisotropic solid, J. Appl. Phys., 26 (2), 182–185.10.1063/1.1721956
  4. Bowen R. M. (1982) Compressible porous media models by use of the theory of mixtures, Int. J. Eng. Sci., 20 (6), 697–735.10.1016/0020-7225(82)90082-9
  5. Finn W. D. L., Lee K. W. and Martin G. R. (1977) An effective stress model for liquefaction, Proc. ASCE, J. Geotech. Eng. Div., 103 (6), 517–533.10.1061/AJGEB6.0000434
  6. Finn W. D. L., Pickering D. J. and Bransby P. L. (1971) Sand liquefaction in triaxial and simple shear tests, Proc. ASCE, J. Soil Mech. Found. Div., 97 (4), 639–659.10.1061/JSFEAQ.0001579
  7. Gazetas G. and Yegian M. K. (1979) Shear and Rayleigh waves in soil mechanics, Proc. ASCE, J. Geotech. Eng. Div., 105, 1455–1470.10.1061/AJGEB6.0000900
  8. Hardin R. and Drnevich V. P. (1972) Shear modulus and damping in soils: measurement and parameter effects, Proc. ASCE, J. Soil Mech. Found. Div., 98 (6), 603–624.10.1061/JSFEAQ.0001756
  9. Lysmer J. (1970) Lumped mass method for Rayleigh waves, Bull. Seism. Soc. Am., 60 (1), 89–104.10.1785/BSSA0600010089
  10. Martin G. R., Finn W. D. L. and Seed H. B. (1975) Fundamentals of liquefaction under cyclic loading, Proc. ASCE, J. Geotech. Eng. Div., 101, 423–438.10.1061/AJGEB6.0000164
  11. Morland L. W. and Sawicki A. (1983) A mixture model for the compaction of saturated sand, Mech. Mater., 2 (3), 203–216.10.1016/0167-6636(83)90015-7
  12. Morland L.W. and Sawicki A. (1985) A model for compaction and shear hysteresis in saturated granular materials, J. Mech. Phys. Solids, 33, 1–24.10.1016/0022-5096(85)90019-5
  13. Mróz Z., Norris V. A. and Zienkiewicz O. C. (1981) An anisotropic, critical state model for soils subject to cyclic loading, Gèotechnique, 31 (4), 451–469.10.1680/geot.1981.31.4.451
  14. Sawicki A. (1987) An engineering model for compaction of sand under cyclic loading, Eng. Trans., 35 (4), 677–693.
  15. Sawicki A. (1991) Mechanics of Soils under Cyclic Loading (in Polish), IBW PAN Publishing House, Gdańsk.
  16. Sawicki A. (2014) The Puzzle of Soil Liquefaction, IBW PAN Publishing House, Gdańsk.
  17. Sawicki A. and Mierczyński J. (2006) Developments in modeling liquefaction of granular soils, caused by cyclic loads, Appl. Mech. Rev., 59 (2), 91–106.10.1115/1.2130362
  18. Sawicki A. and Morland L.W. (1985) Pore pressure generation in a saturated sand layer subjected to a cyclic horizontal acceleration at it base, J. Mech, Phys. Solids, 33 (6), 545–559.10.1016/0022-5096(85)90002-X
  19. Sawicki A. and Staroszczyk R. (1995) Development of ground liquefaction due to surface waves, Arch. Mech., 47 (3), 557–576.
  20. Seed H. B. and Lee K. L. (1966) Liquefaction of saturated sands during cyclic loading, Proc. ASCE, J. Soil Mech. Found. Div., 92 (6), 105–134.10.1061/JSFEAQ.0000913
  21. Seed H. B. and Peacock W. H. (1971) Test procedures for measuring soil liquefaction characteristics, Proc. ASCE, J. Soil Mech. Found. Div., 97 (8), 1099–1119.10.1061/JSFEAQ.0001649
  22. Staroszczyk R. (1996) Pore pressure generation and liquefaction in saturated sands due to the propagation of surface waves, Acta Geophys. Pol., 44 (2), 195–218.
  23. Staroszczyk R. (1998) Love wave-induced liquefaction in a saturated sand layer, J. Theor. Appl. Mech., 36 (3), 723–744.
  24. Valanis K. C. and Peters J. F. (1991) An endochronic plasticity theory with shear-volumetric coupling, Int. J. Numer. Anal. Meth. Geomech., 15 (2), 77–102, DOI: 10.1002/nag.1610150202.10.1002/nag.1610150202
  25. Verruijt A. (1969) Elastic storage of aquifers, in: Flow through Porous Media (ed. R. J. M. De Wiest), chap. 8, Academic Press, New York, pp. 331–376.
  26. Zienkiewicz O. C., Taylor R. L. and Zhu J. Z. (2005) The Finite Element Method: Its Basis and Fundamentals, Elsevier Butterworth-Heinemann, Amsterdam, 6th edn.
DOI: https://doi.org/10.1515/heem-2016-0011 | Journal eISSN: 2300-8687 | Journal ISSN: 1231-3726
Language: English
Page range: 173 - 190
Submitted on: Nov 30, 2016
Published on: Apr 4, 2017
Published by: Polish Academy of Sciences, Institute of Hydro-Engineering
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2017 Ryszard Staroszczyk, published by Polish Academy of Sciences, Institute of Hydro-Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.