Have a personal or library account? Click to login
Impact of Energy Slope Averaging Methods on Numerical Solution of 1D Steady Gradually Varied Flow Cover

Impact of Energy Slope Averaging Methods on Numerical Solution of 1D Steady Gradually Varied Flow

Open Access
|Mar 2016

References

  1. Ascher U. M., Petzold L. R. (1998) Computer methods for Ordinary Differential Equations and Difference-Algebraic Equations, SIAM, Philadelphia.10.1137/1.9781611971392
  2. Artichowicz W., Szymkiewicz R. (2014) Computational issues of solving the 1D steady gradually varied flow equation, J. Hydrol. Hydromech., 62 (3), 226–233, DOI: 10.2478/johh-2014-0031.10.2478/johh-2014-0031
  3. Artichowicz, W., Mikos-Studnicka, P. (2014) Comparison of Average Energy Slope Estimation Formulas for One-dimensional Steady Gradually Varied Flow, Archives of Hydro-Engineering and Environmental Mechanics, 61 (3–4), 89–109, DOI: 10.1515/heem-2015-000610.1515/heem-2015-0006
  4. Chanson H. (2004) The hydraulics of open channel flow: an introduction. Second Edition. Elsevier.10.1016/B978-075065978-9/50006-4
  5. Chadderton R. A., Miller A. C. (1980) Friction models for M2 profiles, JAWRA Journal of the American Water Resources Association, 16 (2), 235–242, DOI: 10.1111/j.1752-1688.1980.tb02384.x.10.1111/j.1752-1688.1980.tb02384.x
  6. Cunge J. A., Holly F. M., Verwey A. (1979) Practical aspects of computational river hydraulics, Pitman advanced publishing program, Boston, London, Melbourne.
  7. Chow V. T. (1959) Open-channel hydraulics, McGraw-Hill / Kogakusha Company LTD, Tokyo.
  8. Fatunla S. O. (1982) Nonlinear multistep methods for initial value problems, Computers&Mathematics with Applications, 8 (3), 231–239, DOI: 10.1016/0898-1221(82)90046-3.10.1016/0898-1221(82)90046-3
  9. French R. H. (1985) Open Channel Hydraulics, McGraw-Hill, New York.
  10. Gustafsson B. (2011) Fundamentals of Scientific Computing, Springer-Verlag, Berlin, Heidelberg.
  11. Gasiorowski D. (2013) Impact of diffusion coefficient averaging on solution accuracy of the 2D nonlinear diffusive wave equation for floodplain inundation, Journal of Hydrology, 517, 923–935, DOI:10.1016/j.jhydrol.2014.06.039.10.1016/j.jhydrol.2014.06.039
  12. Hairer E., Wanner G. (2010) Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, Second Revised Edition, Springer, Berlin, Heidelberg.
  13. Kincaid D., Cheney W. (2002) Numerical Analysis, Wydawnictwa Naukowo-Techniczne, Warszawa (in Polish).
  14. Lambert J. D., Shaw B. (1965) A Method for Numerical Solution of y′ = f (x, y) Based on a Self-Adjusting Non-Polynomial Interpolant, Math. Comp., 20, 11–20, DOI: 10.1090/S0025-5718-1966-0189252-1.10.1090/S0025-5718-1966-0189252-1
  15. Laurenson E. M. (1986) Friction Slope Averaging in Backwater Calculations, J. Hydraul. Eng., 112 (12), 1151–1163.10.1061/(ASCE)0733-9429(1986)112:12(1151)
  16. LeVeque R. J. (2007) Finite Difference Methods for Ordinary and Partial Differential Equations, SIAM, DOI:10.1137/1.9780898717839.10.1137/1.9780898717839
  17. Luke Y. L., Fair W., Wimp J. (1975) Predictor-corrector formulas based on rational interpolants., Computers & Mathematics with Applications, 1 (1), 3–12, DOI: 10.1016/0898-1221(75)90003-6.10.1016/0898-1221(75)90003-6
  18. MacDonald I., Baines M. J., Nichols N. K., Samuels P. G. (1997) Analytic Benchmark Solutions for Open-Channel Flows, J. Hydraul. Eng., 123 (11), 1041–1045.10.1061/(ASCE)0733-9429(1997)123:11(1041)
  19. Szymkiewicz R. (2010) Numerical modeling in open channel hydraulics, Springer.10.1007/978-90-481-3674-2
  20. US Army Corps of Engineers (2010) HEC-RAS hydraulic reference.
DOI: https://doi.org/10.1515/heem-2015-0022 | Journal eISSN: 2300-8687 | Journal ISSN: 1231-3726
Language: English
Page range: 101 - 119
Submitted on: Oct 9, 2015
|
Published on: Mar 17, 2016
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2016 Wojciech Artichowicz, Dzmitry Prybytak, published by Polish Academy of Sciences, Institute of Hydro-Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.