Have a personal or library account? Click to login
Modelling of Flood Wave Propagation with Wet-dry Front by One-dimensional Diffusive Wave Equation Cover

Modelling of Flood Wave Propagation with Wet-dry Front by One-dimensional Diffusive Wave Equation

Open Access
|Oct 2015

References

  1. Abbot M. B. (1979) Computational hydraulics - elements of the theory of free surface flow, Pitman.
  2. Bale D. S., LeVeque R. J., Mitran S., Rossmanith J. A. (2002) A wave propagation method for conservation laws and balance laws with spatially varying flux functions, SIAM, J. Sci. Comput., 24 (3), 995-978.
  3. Bates P. D., Horrit M. S., Fewtrell T. J. (2010) A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling, Journal of Hydrology, 387, 33-45.10.1016/j.jhydrol.2010.03.027
  4. Begnudelli L., Sanders B. F. (2006) Unstructured grid finite-volume algorithm for shallow-water flow and scalar transport with wetting and drying, Journal of Hydraulic Engineering, 132 (4), 371-384.10.1061/(ASCE)0733-9429(2006)132:4(371)
  5. Cunge J. A. (1975) Two-dimensional modeling of flood plains. [In]: K. Mahmood, and V. Yevjevich (eds.), Unsteady flow in open channels, vol. II, Water Resources Publications, Collins, Colorado, USA, 705-762.
  6. Fletcher C. A. J. (1991) Computational techniques for fluid dynamics, vol. I, Springer-Verlag.10.1007/978-3-642-58239-4
  7. Gąsiorowski D.(2011) Solution of the dike-break problem using finite volume method and splitting technique, TASK Quarterly, 15 (3-4), 251-270.
  8. Gąsiorowski D. (2013) Analysis of floodplain inundation using 2D nonlinear diffusive wave equation solved with splitting technique, Acta Geophysica, 61 (3), 668-689.10.2478/s11600-012-0087-8
  9. Gąsiorowski D. (2014) Impact of diffusion coefficient averaging on solution accuracy of the 2D nonlinear diffusive wave equation for floodplain inundation, Journal of Hydrology, 517, 923-935.10.1016/j.jhydrol.2014.06.039
  10. Gourgue O., Comblen R., Lambrechts J., Kärnä T., Legat V., Deleersnijder (2009) A flux-limiting wetting-drying method for finite-element shallow-water models, with application to the Scheldt Estuary, Advances in Water Resources, 32, 1726-1739.10.1016/j.advwatres.2009.09.005
  11. Heniche M., Secretan Y., Boudreau P., Leclerc M. (2000) A two-dimensional finite drying-wetting shallow water model for rivers and estuaries, Advances in Water Resources, 23, 359-372.10.1016/S0309-1708(99)00031-7
  12. Horritt M. S. (2002) Evaluating wetting and drying algorithms for finite element models of shallow water flow, International Journal for Numerical Methods in Engineering, 55, 835-851.10.1002/nme.529
  13. Horrit M. S., Bates P. D. (2002) Evaluation of 1D and 2D numerical models for predicting river flood inundation, Journal of Hydrology, 268, 87-99.10.1016/S0022-1694(02)00121-X
  14. Hromadka T. V. (1985) Predicting Dam-Break Flood Depths Using A One-Dimensional Diffusion Model, Microsoftware For Engineers, 1 (1), 22-31.
  15. Hromadka T. V., Yen C. C. (1986) A diffusion hydrodynamic model (DHM), Advances in Water Resources, 9, 118-170.10.1016/0309-1708(86)90031-X
  16. Hsu M. H., Chen S. H., Chang T. J. (2000) Inundation simulation for urban drainage basin with storm sewer system, Journal of Hydrology, 234, 21-37.10.1016/S0022-1694(00)00237-7
  17. Lal A. M.W. (1998) Performance comparison of overland flow algorithms, Journal of Hydraulic Engineering, 124 (4), 342-349.10.1061/(ASCE)0733-9429(1998)124:4(342)
  18. LeVeque R. J. (2002) Finite volume methods for hyperbolic problems, Cambrige University Press.10.1017/CBO9780511791253
  19. LeVeque R. J. (1997)Wave Propagation Algorithms for Multidimensional Hyperbolic Systems, Journal of Computational Physics, 131, 327-353.10.1006/jcph.1996.5603
  20. Liang Q., Borthwick A. G. L. (2009) Adaptive quadtree simulation of shallow flow with wet-dry fronts over complex topography, Computers and Fluids, 38, 221-234.10.1016/j.compfluid.2008.02.008
  21. Moussa R., Bocquillon C. (2009) On the use of the diffusive wave for modeling extreme flood events with overbank flow in the floodplain, Journal of Hydrology, 374, 116-135.10.1016/j.jhydrol.2009.06.006
  22. Neal J., Villanueva I.,Wright N.,Willis T., Fewtrell T., Bates P. (2011) How much physical complexity is needed to model flood inundation?, Hydrological Processes, 26 (15), 2264-2282.10.1002/hyp.8339
  23. Oritz P. (2013) Shallow water flows over flooding areas by a flux-corrected finite element method, Journal of Hydraulic Research, 52, 2, 241-252,10.1080/00221686.2013.841777
  24. Prestininzi P. (2008) Suitability of the diffusive model for dam break simulation application to a CADAM experiment, Journal of Hydrology, 361, 172-185.10.1016/j.jhydrol.2008.07.050
  25. Singh V. P. (1996) Kinematic wave modeling in water resources, John Wiley & Sons, Inc. New York.
  26. Szydłowski M. (2007) Mathematical modeling of flood waves in urban areas, Monographs of Gdańsk University of Technology , vol. 86, Gdańsk (in Polish).
  27. Szydłowski M. (2008) Two-dimensional diffusion wave model for numerical simulation of inundation - Narew case study, Publs. Inst. Geophys. Pol. Acad. Sc., E-9, 405, 107-120.
  28. Szydłowski M., Magnuszewski A. (2007) Free surface flow modeling in numerical estimation of flood risk zones: a case study, Gdańsk, TASK Quarterly, 11 (4), 301-313.
  29. Szymkiewicz R. (1995) Method to solve 1D unsteady transport and flowequations, Journal of Hydraulic Engineering ASCE, 121 (5), 396-403.10.1061/(ASCE)0733-9429(1995)121:5(396)
  30. Szymkiewicz R. (2010) Numerical modeling in open channel hydraulics,Water Science and Technology Library, Springer, New York.10.1007/978-90-481-3674-2
  31. Szymkiewicz R., Gąsiorowski D. (2012) Simulation of unsteady flow over floodplain using the diffusive wave equation and the modified finite element, Journal of Hydrology, 464-465, 165-167.10.1016/j.jhydrol.2012.07.009
  32. Tan W. (1992) Shallow water hydrodynamics, Elsevier, Amsterdam.
  33. Zhang X. H., Ishidaira H., Takeuchi K., Xu Z. X., Zhuang X. W. (2004) An approach to inundation in large river basins using the triangle finite difference method, Journal of Environmental Informatics, 3 (1), 51-63.10.3808/jei.200400027
DOI: https://doi.org/10.1515/heem-2015-0007 | Journal eISSN: 2300-8687 | Journal ISSN: 1231-3726
Language: English
Page range: 111 - 125
Submitted on: Oct 9, 2014
Published on: Oct 7, 2015
Published by: Polish Academy of Sciences, Institute of Hydro-Engineering
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2015 Dariusz Gąsiorowski, published by Polish Academy of Sciences, Institute of Hydro-Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.