Have a personal or library account? Click to login
Incompressible SPH Model for Simulating Violent Free-Surface Fluid Flows Cover

Incompressible SPH Model for Simulating Violent Free-Surface Fluid Flows

Open Access
|Oct 2015

References

  1. Antoci C., Gallati M. and Sibilla S. (2007) Numerical simulation of fluid-structure interaction by SPH, Comput. Struct., 85 (11-14), 879-890, DOI: 10.1016/j.compstruc.2007.01.002.10.1016/j.compstruc.2007.01.002
  2. Belytschko T., Krongauz Y., Dolbow J. and Gerlach C. (1998) On the completeness of meshfree particle methods, Inter. J. Numer. Meth. Eng., 43 (5), 785-819, DOI: 10.1002/(SICI)1097-0207(19981115) 43:5.
  3. Belytschko T., Krongauz Y., Organ D., Fleming M. and Krysl P. (1996) Meshless methods: An overview and recent developments, Comput. Meth. Appl. Mech. Eng., 139 (1-4), 3-47.10.1016/S0045-7825(96)01078-X
  4. Braess H. andWriggers P. (2000), Arbitrary Lagrangian Eulerian finite element analysis of free surface flows, Comput. Meth. Appl. Mech. Eng., 190 (1-2), 95-109.10.1016/S0045-7825(99)00416-8
  5. Chang T. J., Kao H. M., Chang K. H. and Hsu M. H. (2011) Numerical simulation of shallow-water dam break in open channels using smoothed particle hydrodynamics, J. Hydrol., 408 (1-2), 78-90, DOI: 10.1016/j.hydrol.2011.07.023.
  6. Chorin A. j. (1968) Numerical solution of the Navier-Stokes equations, Math. Comput., 22 (104), 745-762.
  7. Colagrossi A. and Landrini M. (2003) Numerical simulation of interfacial flows by smoothed particle hydrodynamics, J. Comput. Phys., 191 (2), 448-475, DOI: 10.1016/S0021-9991(03)00324-3.10.1016/S0021-9991(03)00324-3
  8. Cummins S. J. and Rudman M. (1999) An SPH projection method, J. Comput. Phys., 152 (2), 584-607, DOI: 10.1016/jcph1999.6246.
  9. Cummins S. J., Silvester T. B. and Cleary P. W. (2012) Three-dimensional wave impact on a rigid structure using smoothed particle hydrodynamics, Int. J. Numer. Meth. Fluids, 68 (12), 1471-1496, DOI: 10.1016/fld.2539.
  10. Dalrymple R. A. and Rogers B. D. (2006) Numerical modeling of water waves with the SPH method, Coastal Eng., 53 (2-3), 141-147, DOI: 10.1016/j.coastaleng.2005.10.004.10.1016/j.coastaleng.2005.10.004
  11. Gingold R. A. and Monaghan J. J. (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars, Mon. Not. R. Astron. Soc., 181, 375-389.
  12. Gómez-Gesteira M., Cerqueiro D., Crespo C. and Dalrymple R. A. (2005) Green water overtopping analyzed with a SPH method, Ocean Eng., 32 (2), 223-238, DOI: 10.1016/j.oceaneng.2004.08.003.10.1016/j.oceaneng.2004.08.003
  13. Harlow F. H. (2004) Fluid dynamics in Group T-3 Los Alamos National Laboratory (LA-UR-03-3852), J. Comput. Phys., 195 (2), 414-433, DOI: 10.1016/jcph2003.09.030.
  14. Harlow F. H. and Welch J. E. (1965) Numericl calculation of time-dependent viscous incompressible flow of fluid with free surface, Phys. Fluids, 8 (12), 2182-2189.
  15. Hu X. Y. and Adams N. A. (2007) An incompressible multi-phase SPH method, J. Comput. Phys., 227 (1), 264-278, DOI: 10.1016/j.jcp2007.07.013.
  16. Johnson G. R., Stryk R. A. and Beissel S. R. (1996) SPH for high velocity impact computations, Comput.10.1016/S0045-7825(96)01089-4
  17. Appl. Mech. Eng., 139 (1-4), 347-373.
  18. Li S. and Liu W. K. (2004) Meshfree Particle Methods, Springer, Berlin.
  19. Lo E. Y. M. and Shao S. (2002) Simulation of near-shore solitary wave mechanics by an incompressible SPH method, Appl. Ocean Res., 24 (5), 275-286, DOI: 10.1016/S0141-1187(03)00002-6.10.1016/S0141-1187(03)00002-6
  20. Lucy L. B. (1977) A numerical approach to the testing of the fission hypothesis, Astron. J., 82 (12), 1013-1024.
  21. Martin J. C. and MoyceW. J. (1952) An experimental study of the collapse of liquid columns on a rigid horizontal plane, Phil. Trans. R. Soc. Lond. A 244 (882), 312-324.
  22. Monaghan J. J. (1992) Smoothed particle hydrodynamics, Annu. Rev. Astron. Astrophys., 30, 543-574, DOI: 10.1146/annurev.aa.30.090192.002551.10.1146/annurev.aa.30.090192.002551
  23. Monaghan J. J. (1996) Gravity currents and solitary waves, Physica D, 98 (2-4), 523-533.10.1016/0167-2789(96)00110-8
  24. Morris J. P. (1996) Analysis of Smoothed Particle Hydrodynamics with Applications, Ph. D. thesis, Monash University, Melbourne, Australia.
  25. Quecedo M., Pastor M., Herreros M. I., Fernandez Merodo J. A. and Zhang Q. (2005) Comparison of two mathematical models for solving the dam break problem using the FEM method, Comput.10.1016/j.cma.2004.09.011
  26. Meth. Appl. Mech. Eng., 194 (36-38), 3984-4005, DOI: 10.1146/j.cma.2004.08.011.
  27. Rabier S. and Medale M. (2003) Computation of free surface flows with a projection FEM in a moving mesh framework, Comput. Meth. Appl. Mech. Eng., 192 (41-42), 4703-4721.10.1016/S0045-7825(03)00456-0
  28. Radovitzky R. and Ortiz M. (1998) Lagrangian finite element analysis of Newtonian viscous flow, Int.10.1002/(SICI)1097-0207(19981030)43:4<;607::AID-NME399>3.0.CO;2-N
  29. J. Numer. Meth. Eng., 43 (4), 608-619.
  30. Rafiee A., Cummins S., Rudman M. and Thiagarajan K. (2012) Comparative study on the accuracy and stability of SPH schemes in simulating energetic free-surface flows, Eur. J. Mech. B/Fluids, 36 (1-16), DOI: 10.1146/j.euromechflu.2012.05.001.
  31. Ramaswamy B. and Kawahara M. (1987) Lagrangian finite element analysis applied to viscous free surface flow, Int. J. Numer. Meth. Fluids, 7 (9), 953-984.10.1002/fld.1650070906
  32. Randles P.W. and Libersky L. D. (1996) Smoothed Particle Hydrodynamics. Some recent improvements and applications, Comput. Meth. Appl. Mech. Eng., 139 (1-4), 375-408.10.1016/S0045-7825(96)01090-0
  33. Shao S. (2006) Incompressible SPH simulation of wave breaking and overtopping with turbulence modelling, Int. J. Numer. Meth. Fluids, 50 (5), 597-621, DOI: 10.1002/fld.1068.10.1002/fld.1068
  34. Shao S. (2010) Incompressible SPH flow model for wave interactions with porous media, Coastal Eng., 57 (3), 304-316, DOI: 10.1016/j.coastaleng.2009.10.012. Shao S. and Lo E.Y. M. (2003) Incompressible SPH for simulating Newtonian and non-Newtonian flows with a free surface, Adv. Water Resour., 26 (7), 787-800, DOI: 10.1016/S0309-1708(03)0030-7.
  35. Souli M. and Zolesio J. P. (2001) Arbitrary Lagrangian-Eulerian and free surface methods in fluid mechanics, Comput. Meth. Appl. Mech. Eng., 191 (3-5), 451-466.10.1016/S0045-7825(01)00313-9
  36. Staroszczyk R. (2007) A Lagrangian finite element treatment of transient gravitational waves in compressible viscous fluids, Arch. Hydro-Eng. Environ. Mech., 54 (4), 261-284.
  37. Staroszczyk R. (2009) A Lagrangian finite element analysis of gravity waves in water of variable depth, Arch. Hydro-Eng. Environ. Mech., 56 (1-2), 43-61.
  38. Staroszczyk R. (2010) Simulation of dam-break flow by a corrected smoothed particle hydrodynamics method, Arch. Hydro-Eng. Environ. Mech., 57 (1), 61-79.
  39. Staroszczyk R. (2011) Simulation of solitary waves mechanics by a corrected smoothed particle hydrodynamics method, Arch. Hydro-Eng. Environ. Mech., 58 (1-4), 23-45, DOI: 10.2478/ v10203-011-0002-9.
  40. Szydłowski M. and Zima P. (2006) Two-dimensional vertical Reynolds-averaged Navier-Stokes equations versus one-dimensional Saint-Venant model for rapidly varied open channel water flow modelling, Arch. Hydro-Eng. Environ. Mech., 53 (4), 295-309.
DOI: https://doi.org/10.1515/heem-2015-0004 | Journal eISSN: 2300-8687 | Journal ISSN: 1231-3726
Language: English
Page range: 61 - 83
Submitted on: Sep 11, 2014
Published on: Oct 7, 2015
Published by: Polish Academy of Sciences, Institute of Hydro-Engineering
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2015 Ryszard Staroszczyk, published by Polish Academy of Sciences, Institute of Hydro-Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.