Have a personal or library account? Click to login
Climate sensitivity of radial growth in Norway spruce (Picea abies (L.) Karst.) under different CO2 concentrations Cover

Climate sensitivity of radial growth in Norway spruce (Picea abies (L.) Karst.) under different CO2 concentrations

Open Access
|May 2017

References

  1. Agrawal, S.B., Agrawal, M. (eds.) 1999. Environmental pollution and plant responses. CRC Press/Lewis Publishers, Boca Raton, Florida. 390 pp.
  2. Atwell, B.J., Henery, M.L., Whitehead, D. 2002. Sapwood development in Pinus radiata trees grown for three years at ambient and elevated carbon dioxide partial pressures. - Tree Physiology, 23, 13-21.
  3. Augustin, L., Barbante, C., Barnes, R.F., Barnola, J.M., Bigler, M., Castellano, E., Cattani, O., Chappallaz, J., Dahl-Jensen, D., Delmonte, B., Dreyfus, G., Durand, G., Falourd, S., Fischer, H., Flückiger,J., Hansson, M.E., Huybrechts, P., Jugie, G., Johnsen, S.J., Jouzel, J., Kaufmann, P., Kipfstuhl, J., Lambert, F., Lipenkov, V.Y., Littot, G.C., Longinelli, A., Lorrain, R., Maggi, V., Masson-Delmotte, V., Miller, H., Mulvaney, R., Oerlemans, J., Oerter, H., Orombelli, G., Parrenin, F., Peel, D.A., Petit, J-.R., Raynaud, D., Ritz, C., Ruth, U., Schwander, J., Siegenthaler, U., Souchez, R., Stauffer, B., Steffensen, J.P., Stenni, B., Stocker, T.F., Tabacco, I.E., Udisti, R., van de Wal, R.S.W., van den Broeke, M., Weiss, J., Wilhelms, F., Winther, J-.G., Wolff, E.W., Zucchelli, M. 2004. Eight glacial cycles from an Antarctic ice core. - Nature, 429(6992), 623-628.
  4. Bader, M.K.F., Leuzinger, S., Keel, S.G., Siegwolf, R.T.W., Hagedorn, F., Schleppi, P., Körner, C. 2013. Central European hardwood trees in a high CO2 future: synthesis of an 8-year forest canopy CO2 enrichment project. - Journal of Ecology, 101, 1509-1519.10.1111/1365-2745.12149
  5. Bijak, S. 2009. Climate-growth relationships of Norway spruce in north-eastern Poland. - Levanic, T., Gricar, J., Hafner, P., Krajnc, R., Jagodic, S., Gärtner, H., Heinrich, I., Helle, G. (eds.). Trace - Tree Rings in Archaeology, Climatology and Ecology, Vol. 8. Proceedings of the Dendrosymposium 2009, April 16th-19th 2009, Otočec, Slovenia. GFZ Potsdam, Scientifi c Technical Report STR 10/05, Potsdam, 98-103.
  6. Brown, K., Higginbotham, K.O. 1986. Effects of carbon dioxide enrichment and nitrogen supply on growth of boreal tree seedlings. - Tree Physiology, 2, 223-232.
  7. Buentgen, U., Frank, D.C., Nievergelt, D., Esper, J. 2006. Summer temperature variations in the Swiss Federal Research Institute WSL, Birmensdorf, Switzerland. - Journal of Climate, 19, 5606-5623.
  8. Campelo, F., Nabais, C., Freitas, H., Gutiérrez, E. 2006. Climatic signifi cance of tree-ring width and intraannual density fl uctuations in Pinus pinea from a dry Mediterranean area in Portugal. - Annals of Forest Science, 64(2), 229-238.
  9. Crookshanks, M., Taylor, G., Broadmeadow, M. 1998. Elevated CO2 and tree root growth: contrasting responses in Fraxinus excelsior, Quercus petraea and Pinus sylvestris. - New Phytologist, 138, 241-250.10.1046/j.1469-8137.1998.00109.x
  10. Drake, J.E., Gallet, B.A., Hofmockel, K.S., Bernhardt, E.S., Billing, S.A., Jackson, R.B., Johnsen, K.S., Lichter, J., McCarthy, H.R., McCormack, M.L. 2011. Increases in the fl ux of carbon belowground stimulated nitrogen uptake and sustain the long-term enhancement of forest productivity under elevated CO2. - Ecology Letters, 14, 349-357.
  11. Egli, P., Körner, C. 1997. Growth responses to elevated CO2 and soil quality in beech-spruce model ecosystems. - Acta Oecologica, 18(13), 343-349.
  12. Egli, P., Maurer, S., Guentharot-Goerg, M.S., Körner, C. 1998. Effect of elevated CO2 and soil quality on leaf gas exchange and aboveground growth in beechspruce model. - New Phytologist, 140(2), 185-196.
  13. Feliksik, A., Wilczynski, S. 2009.The effect of climate on tree-ring chronologies of native and nonnative tree species growing under homogenous site conditions. - Geochronometria, 33, 49-57.
  14. Hättenschwiler, S., Schweingruber, F.H., Körner, C. 1996.Tree ring responses to elevated CO2 and increased N deposition in Picea abies. - Plant Cell and Environment, 19, 1369-1378.
  15. Hauke, J., Kossowski, T. 2011. Comparison of values of Pearson and Spearman’s correlation coeffi cients on the same sets of data. - Quaestiones Geographicae, 30(2), 87-93.
  16. Helama, S., Läänelaid, A., Bijak, S., Jaagus, J. 2016. Contrasting tree-ring growth response of Picea abies to climate variability in western and eastern Estonia. - Geografi ska Annaler Series A-Physical Geography, 98(2), 155-167.
  17. IPCC. 2013. Summary for Policymakers. - Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (eds.). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 28 pp.
  18. Jach, M.E., Ceulemans, R. 1999. Effects of elevated atmospheric CO2 on phenology, growth and crown structure of Scots pine (Pinus sylvestris) seedlings after two years of exposure in the fi eld. - Tree Physiology, 19, 289-300.
  19. Jarvis, P.G. 1998. European forests and global change. Cambridge University Press, Cambridge. 379 pp.
  20. Kennedy, R.W. 1961. Variation and periodicity of summer wood in some second growth Douglas fi r. - Tappi, 44, 161-166.
  21. Kilpeläinen, A., Gerendiain, A.Z., Luostarinen, K., Peltola, H., Kellomäki, S. 2007. Elevated temperature and CO2 concentration effects on xylem anatomy of Scots pine. - Tree Physiology, 27(9), 1329-38.
  22. Kilpeläinen, A., Peltola, H., Ryyppoe, A., Kellomäki, S. 2005. Scots pine responses to elevated temperature and carbon dioxide concentration: growth and wood properties. - Tree Physiology, 5, 75-83.10.1093/treephys/25.1.7515519988
  23. Klein, T., Bader, M.K.F., Leuzinger, S., Mildner, M., Schleppi, P., Siegwolf, R.T.W., Körner, C. 2016. Growth and carbon relations of mature Picea abies trees under fi ve years of free air CO2 enrichment. - Journal of Ecology, 104(6), 1720-1733.
  24. Körner, C. 2006. Plant CO2 responses: an issue of defi - nition, time and resource supply. - New Phytologist, 172(3), 393-411.
  25. LaMarche, V.C., Graybill, D.A., Fritts, H.C., Rose, M.R.1984. Increasing atmospheric carbon dioxide: tree ring evidence for growth enhancement in natural vegetation. - Science, 225, 1019-1021.10.1126/science.225.4666.101917783044
  26. Lebourgeois, F. 2000. Climatic signals in earlywood, latewood and total ring width of Corsican pine from western France. - Annals of Forest Science, 57, 155-164.
  27. Madhu, M., Hatfield, J.L. 2013. Dynamics of plant root growth under increased atmospheric carbon dioxide. - Agronomy Journal, 105, 657-669.
  28. Makino, A., Mae, T. 1999. Photosynthesis and plant growth at elevated levels of CO2. - Plant Cell Physiology, 40(10), 999-1006.
  29. Mustafa, Y.T. 2012. Improving forest growth estimation Bayesian Networks for integrating satellite images and process-based forest growth models. Ph.D Thesis, Twente University of Netherland. 163 pp.
  30. Nicolussi, K., Bortenschlager, S., Körner, C. 1995. Increase in tree-ring widthin subalpine Pinus cembra from the central Alps that may be CO2-related. - Trees, 9, 181-189.
  31. Norby, R.J., Zak, D.R. 2011. Ecological Lessons From Free-Air CO2 Enrichment (FACE) Experiments. - The Annual Review of Ecology, Evolution, and Systematics, 42, 181-203.
  32. Pearson, P.N., Palmer, M.R. 2000. Atmospheric carbon dioxide concentrations over the past 60 million years. - Nature, 406, 695-699.
  33. Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.-M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V.M., Legrand, M., Lipenkov, V.Y., Lorius, C., Pepin, L., Ritz, C., Saltzman, E., Stievenard, M. 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. - Nature, 399(6735), 429-436.10.1038/20859
  34. Pokorný, R., Rajsnerová, P., Kubásek, J., Marková, I., Tomášková, I. 2012b. Effect of early to latewood proportion on Norway spruce biomass. - Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis LX, 37(6), 287-292.
  35. Pokorný, R., Tomášková, I., Marek, M.V. 2013. Response of Norway spruce root system to elevated atmospheric CO2 concentration. - Acta Physiologiae Plantarum, 35, 1807-1816.
  36. Pokorný, R., Tomášková, I., Slípková, R. 2012a. The effect of air elevated [CO2] on crown architecture and aboveground biomass in Norway spruce (Picea abies (L.) Karst). - Baltic Forestry, 18(1), 2-11.
  37. Rohner, B., Weber, P., Thürig, E. 2016. Bridging tree rings and forest inventories: How climate effects on spruce and beech growth aggregate over time. - Forest Ecology and Management, 360, 159-169.
  38. Runion, G.B., Entry, J.A., Prior, S.A., Mitchen, R.Y., Rogers, H.H. 1999. Tissue chemistry and carbon allocation in seedling of Pinus palustris subjected to elevated atmospheric CO2 and water stress. - Tree Physiology, 19, 329-335.
  39. Sander, C., Eckstein, D., Kyncl, J., Dobry, J. 1995. The growth of spruce (Picea abies (L.) Karst) in the Krkonoše (Giant) Mountains as indicated by ring width and wood density. - Annals of Forest Science, 52(5), 401-410.
  40. Selås,V., Piovesan, G., Adams, J.M., Bernabei, M. 2002. Climatic factors controlling reproduction and growth of Norway spruce in southern Norway. - Canadian Journal of Forest Research, 32, 217-225.
  41. Shishkova, V., Panayotov, M. 2013. Pinus nigra Rrn. Tree ring chronology from Slavyanka Mts. in Bulgaria is strongly related to regional drought events. - Forestry Ideas, 19(45), 79-90.
  42. Sidor, C.G., Popa, I., Vlad, R., Cherubini, P. 2015. Different tree-ring responses of Norway spruce to air temperature across an altitudinal gradient in the Eastern Carpathians (Romania). - Trees, 29, 985-997.
  43. Smith, A.R., Lukace, M., Bambrick, M., Miglietta, F., Godbold, D.L. 2013. Tree species diversity interacts with elevated CO2 to induce a greater root system response. - Global Change Biology, 19, 217-228.
  44. Temperton, V.M., Grayston, S.J., Jackson, G., Barton, C.V.M., Millard, P., Jarvis, P.G. 2003. Effects of elevated carbon dioxide concentration on growth and nitrogen fi xation in Alnus glutinosa in a long-term fi eld experiment. - Tree Physiology, 23, 1051-1059.
  45. Ulbrichová, I., Podrázský, V., Beran, F., Zahradník, D., Fulín, M., Procházka, J., Kubeček, J. 2015. Picea abies provenance test in the Czech Republic after 36 years Central European provenances. - Journal of Forest Science, 6(11), 465-477.
  46. Underwood, C.A. 2007. Century-scale trends in climatic variability for the Pacifi c Northwest from Western Juniper (Juniperus occidentalis Hook. ssp. occidentalis) tree-ring data. MScThesis, University of Tennessee, Knoxville. 211 pp.
  47. Urban, O., Janouš, D., Pokorný, R., Marková, I., Pavelka, M., Fojtík, Z., Šprtová, M., Kalina, J., Marek, M.V. 2001. Glass domes with adjustable windows: A novel technique for exposing juvenile forest stands to elevated CO2 concentration. - Photosyntetica, 39, 395-401.
  48. Wilson, R.J., Hopfmueller, M. 2001. Dendrochronological investigations of Norway spruce along an elevational transect in the Bavarian Forest. - Dendrochronologia, 19(1), 67-79
  49. Wimmer, R, Strumia, G., Holawe, F. 2000. Use of false rings in Austrian pine to reconstruct early growing season precipitation. - Canadian Journal of Forest Research, 30, 1691-1697.
  50. Wimmer, R., Grabner, M. 1997.Effects of climate on vertical resin duct density and radial growth of Norway spruce (Picea abies (L.) Karst.). - Trees, 11, 271-276.
  51. Wolff, E., Fung, I., Hoskins, B., Mitchell, J., Palmer, T., Santer, B., Shepherd, J., Shine, K., Solomon, S., Trenberth, K., Walsh, J., Wuebbles, D. 2014. Climate Change: Evidence & Causes. - An overview from the Royal Society and the US National Academy of Sciences. 36 pp.
  52. Yamaguchi, D.K., Filion, L., Savage, M. 1993. Relationship of temperature and light ring formation at subarctic treeline and implication for climate reconstruction. - Quanternary Research, 39, 256-262.
  53. Yazaki, K., Funada, R., Mori, S., Maruyama, Y., Abaimov, Y.K., Kayama, M., Koike, T. 2001. Growth and annual ring structure of Larix sibirica grown at different carbon dioxide concentrations and nutrient supply rates. - Tree Physiology, 21, 1223-1229.
  54. Yazaki, K., Maruyama, Y., Mori, M., Koike, T., Funada, R. 2005. Effects of elevated carbon dioxide concentration on wood structure and formation in trees. - Omasa, K., Nouchi, I., De Kok, L.J. (eds.) Plant Responses to Air Pollution and Global Change. Springer, Tokyo, 89-97.
  55. Zubizarreta-Gerendiain, A., Gort-Oromi, J., Mehtätalo, L., Peltola, H., Venäläinen, A., Pulkkinen, P. 2012. Effects of cambial age, clone and climatic factors on ring width and ring density in Norway spruce (Picea abies) in southeastern Finland. - Forest Ecology and Management, 263, 9-16.
DOI: https://doi.org/10.1515/fsmu-2016-0011 | Journal eISSN: 1736-8723 | Journal ISSN: 1406-9954
Language: English
Page range: 43 - 56
Submitted on: Aug 25, 2016
Accepted on: Dec 6, 2016
Published on: May 11, 2017
Published by: Estonian University of Life Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2017 Aysan Badraghi, Radek Pokorný, Kateřina Novosadová, Justina Pietras, Michal V. Marek, published by Estonian University of Life Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.