Have a personal or library account? Click to login
Leaf area index mapping with optical methods and allometric models in SMEAR flux tower footprint at Järvselja, Estonia Cover

Leaf area index mapping with optical methods and allometric models in SMEAR flux tower footprint at Järvselja, Estonia

By:
Open Access
|Jun 2016

References

  1. Anderson, M.C. 1964. Studies of the woodland light climate. I. The photographic computation of light condition. – Journal of Ecology, 52, 27–41.
  2. Arumäe, T., Lang, M. 2013. A simple model to estimate forest canopy base height from airborne lidar data. – Forestry Studies / Metsanduslikud Uurimused, 58, 46–56.
  3. Béland, M., Baldocchi, D.D., Widlowski, J.L., Fournier, R., Verstraete, M.M. 2014. On seeing the wood from the leaves and the role of voxel size in determining leaf area distribution of forests with terrestrial LiDAR. – Agricultural and Forest Meteorology, 184, 82–97.
  4. Bréda, N.J.J. 2003. Ground-based measurements of leaf area index: a review of methods, instruments and current controversies. – Journal of Experimental Botany, 54(392), 2403–2417.
  5. Cescatti, A. 2007. Indirect estimates of canopy gap fraction based on the linear conversion of hemispherical photographs Methodology and comparison with standard thresholding techniques. – Agricultural and Forest Meteorology, 143, 1–12.
  6. Chen, J.M., Rich, P.M., Gower, T.S., Norman, J.M., Plummer, S. 1997. Leaf area index of boreal forests: Theory, techniques and measurements. – Journal of Geophysical Research, 102, 29429–29444.
  7. Danson, F.M., Morsdorf, F., Koetz, B. 2009. Airborne and terrestrial laser scanning for measuring vegetation canopy structure. – Heritage, G.L., Large, A.R.G. (eds.). Laser scanning for the environmental sciences. Oxford, Wiley-Blackwell, 201–219.
  8. Frazer, G.W., Canham, C.D., Lertzman, K.P. 1999. Gap Light Analyzer (GLA), Version 2.0: imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs, users manual and program documentation. Simon Fraser University, Burnaby, British Columbia, and the Institute of Ecosystem Studies, Millbrook, New York.
  9. Gower, S.T., Kucharik, C.J., Norman, J.M. 1999. Direct and indirect estimation of leaf area index, fAPAR, and net primary production of terrestrial ecosystems. – Remote Sensing of Environment, 70, 29–51.
  10. Isenburg, M. 2007. LasTools – efficient tools for LiDAR processing. Version 150202. [WWW document]. – URL http://lastools.org [Accessed 14 April 2015].
  11. Jonckheere, I., Fleck, S., Nackaerts, K., Muys, B., Coppin, P., Weiss, M., Baret, F. 2004. Review of methods for in situ leaf area index determination. Part I. Theories, sensors and hemispherical photography. – Agricultural and Forest Meteorology, 121, 19–35.
  12. Jones H.G. 1992. Plants and microclimate. A quantitative approach to environmental plant physiology. Cambridge, Cambridge University Press. 413 pp.
  13. Kangur, A., Korjus, H., Jõgiste, K., Kiviste, A. 2005. A conceptual model of forest stand development based on permanent sample-plot data in Estonia. – Scandinavian Journal of Forest Research, 20(6), 94–101.
  14. Kärkkäinen, L. 2005. Evaluation of performance of tree-level biomass models for forestry modelling and analyses. Finnish Forest Research Institute, Research papers, 940. 123 pp.
  15. Kiviste, A., Hordo, M. 2002. Network of permanent forest growth plots in Estonia. Forestry Studies / Metsanduslikud Uurimused, 37, 43–58.
  16. Kiviste, A., Hordo, M., Kangur, A., Kardakov, A., Laarmann, D., Lilleleht, A., Metslaid, S., Sims, A., Korjus, H. 2015. Monitoring and modeling of forest ecosystems: the Estonian Network of Forest Research Plots. – Forestry Studies / Metsanduslikud Uurimused, 62, 26–38.
  17. Kodar, A., Lang, M., Arumäe, T., Eenmäe, A., Pisek, J., Nilson, T. 2011. Leaf area index mapping with airborne lidar, satellite images and ground measurements in Järvselja VALERI test site. – Forestry Studies / Metsanduslikud Uurimused, 55, 11–32.
  18. Korf, V. 1939. A mathematical definition of forest stands volume growth law. [Příspěvek k matematické definici vzrůstového zákona hmot lesních porostů.]. Lesnická práce, 18, 339–379. (In Czeckian).
  19. Korhonen, L., Korpela, I., Heiskanen, J., Maltamo, M. 2011. Airborne discrete-return LIDAR data in the estimation of vertical canopy cover, angular canopy closure and leaf area index. – Remote Sensing of Environment, 115, 1065–1080.
  20. Kuusk, A., Lang, M., Kodar, A., Sims, A. 2015. Estimation of leaf area index of hemiboreal forests. – The Open Remote Sensing Journal, 6, 1–10.
  21. Lang, M. 2010. Estimation of crown and canopy cover from airborne lidar data. – Forestry Studies / Metsanduslikud Uurimused, 52, 5–17.
  22. Lang, M., Arumäe, T., Anniste, J. 2012. Estimation of main forest inventory variables from spectral and airborne lidar data in Aegviidu test site, Estonia. – Forestry Studies / Metsanduslikud Uurimused, 56, 27–41.
  23. Lang, M., Kodar, A., Arumäe, T. 2013. Restoration of above canopy reference hemispherical image from below canopy measurements for plant area index estimation in forests. Forestry Studies / Metsanduslikud Uurimused, 59, 13–27.
  24. Lang, M., Kuusk, A., Mõttus, M., Rautiainen, M., Nilson, T. 2010. Canopy gap fraction estimation from digital hemispherical images using sky radiance models and a linear conversion method. – Agricultural and Forest Meteorology, 150, 20–29.
  25. Lang, M., Nilson, T., Kuusk, A., Kiviste, A., Hordo, M. 2007. The performance of foliage mass and crown radius models in forming the input of a forest reflectance model: A test on forest growth sample plots and Landsat 7 ETM+ images. – Remote Sensing of Environment, 110, 445–457.<a href="https://doi.org/10.1016/j.rse.2006.11.030" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.rse.2006.11.030</a>
  26. Leclerc, M.Y., Thurtell, G.W. 1990. Footprint predictions of scalar fluxes using a Markovian analysis. – Boundary-Layer Meteorology, 52, 247–258.
  27. Lefsky, M.A., Cohen, W.B., Acker, S.A., Parker, G.G., Spies, T.A., Harding, D. 1999. Lidar remote sensing of the canopy structure and biophysical properties of Douglas-fir western hemlock forests. – Remote Sensing of Environment, 70, 339–361.
  28. Lefsky, M.A., Cohen, W.B., Parker, G.G., Harding, D.J. 2002. Lidar remote sensing for ecosystem studies. – Bioscience, 52, 19–30.
  29. Liang, S. 2004. Quantitative remote sensing of land surfaces. Hoboken, New Jersey, John Wiley & Sons, Inc.<a href="https://doi.org/10.1002/047172372X" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/047172372X</a>
  30. Macfarlane, C. 2011. Classification method of mixed pixels does not affect canopy metrics from digital images of forest overstorey. – Agricultural and Forest Meteorology, 151, 833–840.
  31. Majasalmi, T., Rautiainen, M., Stenberg, P., Lukeš, P. 2013. An assessment of ground reference methods for estimating LAI of boreal forests. – Forest Ecology and Management, 292, 10–18.
  32. Marklund, L.G. 1988. Biomass functions for pine, spruce and birch in Sweden. Swedish University of Agricultural Sciences. Department of Forest Survey. Report 45, 71 pp.
  33. McGaughey, R.J. 2012. FUSION/LDV: Software for LIDAR Data Analysis and Visualization. October 2013 – FUSION Version 3.40. United States Department of Agriculture, Forest Service, Pacific Northwest Research Station.
  34. Miller, J.B. 1967. A formula for average foliage density. – Australian Journal of Botany, 15, 141–144.
  35. Morsdorf, F., Kötz, B., Meier, E., Itten, K.I., Allgöwer, B. 2006. Estimation of LAI and fractional cover from small footprint airborne laser scanning data based on gap fraction. – Remote Sensing of Environment, 104, 50–61.
  36. Myneni, R.B., Keeling, C.D., Tucker, C.J., Asrar, G., Nemani, R.R. 1997. Increased plant growth in the northern high latitudes from 1981 to 1991. – Letters to Nature; Nature, 386, 698–702.
  37. Nikinmaa, E., Bäck, J. 2008. Individual. – Boreal forest and climate change. Hari, P., Kulmala, L. (eds.). Springer Science + Business Media B.V. 117–118.
  38. Nilson, T. 1999. Inversion of gap frequency data in forest stands. – Agricultural and Forest Meteorology, 98–99, 437–448.
  39. Noe, S.M. 2013. Simple footprint model for SMEAR Estonia. Department of Plant Physiology. Estonian University of Life Sciences. 6p. Version 27.04.2013, unpublished.
  40. Noe, S.M., Kimmel, V., Hüve, K., Copolovici, L., Portillo-Estrada, M., Püttsepp, Ü., Jõgiste, K., Niinemets, Ü., Hörtnagl, L., Wohlfahrt, G. 2011. Ecosystem-scale biosphere–atmosphere interactions of a hemiboreal mixed forest stand at Järvselja, Estonia. – Forest Ecology and Management, 262, 71–81.
  41. Peduzzi, A., Wynne, R.H., Fox, T.R., Nelson, R.F., Thomas, V.A. 2012. Estimating leaf area index in intensively managed pine plantations using airborne laser scanner data. – Forest Ecology and Management, 270, 54–65.
  42. Pope, G., Treitz, P. 2013. Leaf area index (LAI) estimation in boreal mixedwood forest of Ontario, Canada using light detection and ranging (LiDAR) and WorldView-2 imagery. – Remote Sensing, 5, 5040–5063.<a href="https://doi.org/10.3390/rs5105040" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/rs5105040</a>
  43. R Development Core Team. 2014. R: a language and environment for statistical computing. Vienna, Austria.
  44. Rautiainen, M., Nilson, T., and Lükk, T. 2009. Seasonal reflectance trends of hemiboreal birch forests. – Remote Sensing of Environment, 113, 805-815.
  45. Repola, J. 2008. Biomass equations for birch in Finland. – Silva Fennica, 42, 605–624.
  46. Repola, J. 2009. Biomass equations for Scots pine and Norway spruce in Finland. – Silva Fennica, 43, 625–647.
  47. Rich, P.M. 1990. Characterizing plant canopies with hemispherical photographs. – Remote Sensing Reviews, 5, 13–29.
  48. Richardson, J.J., Moskal, L.M., Kim, S.H. 2009. Modeling approaches to estimate effective leaf area index from aerial discrete-return LIDAR. – Agricultural and Forest Meteorology, 149, 1152–1160.
  49. Ross J. 1981. The radiation regime and architecture of plant stands. The Hague, Dr W. Junk Publishers. 420 pp.<a href="https://doi.org/10.1007/978-94-009-8647-3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-94-009-8647-3</a>
  50. Rouse, J.W., Haas, R.H., Schell, J.A., Deering, D.W. 1973. Monitoring vegetation systems in the Great Plains with ERTS. – Third ERTS Symposium, NASA SP-351 I, 309–317.
  51. SMEAR Estonia. 2015. [WWW document]. URL – http://smear.emu.ee/ [Accessed 12 June 2015].
  52. Solberg, S., Brunner, A., Hanssen, K.H., Lange, H., Næsset, E., Rautiainen, M., Stenberg, P. 2009. Mapping LAI in a Norway spruce forest using airborne laser scanning. – Remote Sensing of Environment, 113, 2317–2327.
  53. Stenberg, P. 1996. Correcting LAI-2000 estimates for the clumping of needles in shoots of conifers. – Agricultural and Forest Meteorology, 79, 1–8.
  54. Stenberg, P., Rautiainen, M., Manninen, T., Voipo, P., Smolander, H. 2004. Reduced Simple Ratio better than NDVI for estimating LAI in Finnish pine and spruce stands. – Silva Fennica, 38, 3–14.
  55. Straatsma, M.W., Middelkoop, H. 2006. Airborne laser scanning as a tool for lowland floodplain vegetation monitoring. – Hydrobiologia, 565, 87–103.
  56. Valentine, H.T., Mäkelä, A. 2005. Bridging process-based and empirical approaches to modeling tree growth. – Tree Physiology, 25, 769–779.
  57. Validation of Land European Remote sensing Instruments. 2015. [WWW document]. URL – http://w3.avignon.inra.fr/valeri/ [Accessed 12 June 2015].
  58. Wagner, S. 1998. Calibration of grey values of hemispherical photographs for image analysis. Agricultural and Forest Meteorology, 90, 103–117.
  59. Watson, D.J. 1947. Comparative physiological studies in the growth of field crops. I. Variation in net assimilation rate and leaf area between species and varieties, and within and between years. – Annals of Botany, 11, 41–76.<a href="https://doi.org/10.1093/oxfordjournals.aob.a083148" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1093/oxfordjournals.aob.a083148</a>
  60. Zianis, D., Muukkonen, P., Mäkipää, R., Mencuccini, M. 2005. Biomass and stem volume equations for tree species in Europe. Silva Fennica Monographs, 4, p. 63.
DOI: https://doi.org/10.1515/fsmu-2015-0010 | Journal eISSN: 1736-8723 | Journal ISSN: 1406-9954
Language: English
Page range: 85 - 99
Submitted on: Jul 16, 2015
Accepted on: Nov 11, 2015
Published on: Jun 8, 2016
Published by: Estonian University of Life Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2016 Marta Mõistus, Mait Lang, published by Estonian University of Life Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.