Have a personal or library account? Click to login
Tarski Geometry Axioms. Part III Cover
Open Access
|Mar 2018

References

  1. [1] Michael Beeson and Larry Wos. OTTER proofs in Tarskian geometry. In International Joint Conference on Automated Reasoning, volume 8562 of Lecture Notes in Computer Science, pages 495-510. Springer, 2014. doi: 10.1007/978-3-319-08587-6 38.10.1007/978-3-319-08587-638
  2. [2] Gabriel Braun and Julien Narboux. A synthetic proof of Pappus’ theorem in Tarski’s geometry. Journal of Automated Reasoning, 58(2):23, 2017. doi: 10.1007/s10817-016-9374-4.10.1007/s10817-016-9374-4
  3. [3] Roland Coghetto and Adam Grabowski. Tarski geometry axioms - Part II. Formalized Mathematics, 24(2):157-166, 2016. doi: 10.1515/forma-2016-0012.10.1515/forma-2016-0012
  4. [4] Sana Stojanovic Durdevic, Julien Narboux, and Predrag Janiˇcic. Automated generation of machine verifiable and readable proofs: a case study of Tarski’s geometry. Annals of Mathematics and Artificial Intelligence, 74(3-4):249-269, 2015.
  5. [5] Adam Grabowski. Tarski’s geometry modelled in Mizar computerized proof assistant. In Maria Ganzha, Leszek Maciaszek, and Marcin Paprzycki, editors, Proceedings of the 2016 Federated Conference on Computer Science and Information Systems (FedCSIS), volume 8 of ACSIS - Annals of Computer Science and Information Systems, pages 373-381, 2016. doi: 10.15439/2016F290.10.15439/2016F290
  6. [6] Haragauri Narayan Gupta. Contributions to the Axiomatic Foundations of Geometry. PhD thesis, University of California-Berkeley, 1965.
  7. [7] Timothy James McKenzie Makarios. A mechanical verification of the independence of Tarski’s Euclidean Axiom. Victoria University ofWellington, New Zealand, 2012. Master’s thesis.
  8. [8] Timothy James McKenzie Makarios. The independence of Tarski’s Euclidean Axiom. Archive of Formal Proofs, October 2012. Formal proof development.
  9. [9] Timothy James McKenzie Makarios. A further simplification of Tarski’s axioms of geometry. Note di Matematica, 33(2):123-132, 2014.
  10. [10] Julien Narboux. Mechanical theorem proving in Tarski’s geometry. In F. Botana and T. Recio, editors, Automated Deduction in Geometry, volume 4869 of Lecture Notes in Computer Science, pages 139-156. Springer, 2007.10.1007/978-3-540-77356-6_9
  11. [11] William Richter, Adam Grabowski, and Jesse Alama. Tarski geometry axioms. Formalized Mathematics, 22(2):167-176, 2014. doi: 10.2478/forma-2014-0017.10.2478/forma-2014-0017
  12. [12] Wolfram Schwabhäuser, Wanda Szmielew, and Alfred Tarski. Metamathematische Methoden in der Geometrie. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1983.10.1007/978-3-642-69418-9
DOI: https://doi.org/10.1515/forma-2017-0028 | Journal eISSN: 1898-9934 | Journal ISSN: 1426-2630
Language: English
Page range: 289 - 313
Submitted on: Nov 29, 2017
Published on: Mar 28, 2018
Published by: University of Białystok
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2018 Roland Coghetto, Adam Grabowski, published by University of Białystok
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.