Have a personal or library account? Click to login
Basel Problem Cover

References

  1. [1] M. Aigner and G. M. Ziegler. <em>Proofs from THE BOOK</em>. Springer-Verlag, Berlin Heidelberg New York, 2004.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/978-3-662-05412-3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-3-662-05412-3</a></dgdoi:pub-id>
  2. [2] Grzegorz Bancerek. The fundamental properties of natural numbers. <em>Formalized Mathematics</em>, 1(<bold>1</bold>):41–46, 1990.
  3. [3] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, <em>Intelligent Computer Mathematics</em>, volume 9150 of <em>Lecture Notes in Computer Science</em>, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi: <a href="https://doi.org/10.1007/978-3-319-20615-817." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-3-319-20615-817.</a><pub-id pub-id-type="doi"><a href="https://doi.org/10.1007/978-3-319-20615-817" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-3-319-20615-817</a></pub-id>
  4. [4] Czesław Byliński. The complex numbers. <em>Formalized Mathematics</em>, 1(<bold>3</bold>):507–513, 1990.
  5. [5] Czesław Byliński. Some properties of restrictions of finite sequences. <em>Formalized Mathematics</em>, 5(<bold>2</bold>):241–245, 1996.
  6. [6] Augustin Louis Cauchy. <em>Cours d’analyse de l’Ecole royale polytechnique</em>. de l’Imprimerie royale, 1821.
  7. [7] Artur Korniłowicz and Karol Pąk. Basel problem – preliminaries. <em>Formalized Mathematics</em>, 25(<bold>2</bold>):141–147, 2017. doi: <a href="https://doi.org/10.1515/forma-2017-0013." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1515/forma-2017-0013.</a><pub-id pub-id-type="doi"><a href="https://doi.org/10.1515/forma-2017-0013" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1515/forma-2017-0013</a></pub-id>
  8. [8] Anna Justyna Milewska. The field of complex numbers. <em>Formalized Mathematics</em>, 9(<bold>2</bold>): 265–269, 2001.
  9. [9] Robert Milewski. The ring of polynomials. <em>Formalized Mathematics</em>, 9(<bold>2</bold>):339–346, 2001.
  10. [10] Robert Milewski. The evaluation of polynomials. <em>Formalized Mathematics</em>, 9(<bold>2</bold>):391–395, 2001.
  11. [11] Robert Milewski. Fundamental theorem of algebra. <em>Formalized Mathematics</em>, 9(<bold>3</bold>):461–470, 2001.
  12. [12] Piotr Rudnicki. Little Bezout theorem (factor theorem). <em>Formalized Mathematics</em>, 12(<bold>1</bold>): 49–58, 2004.
  13. [13] Christoph Schwarzweller. The binomial theorem for algebraic structures. <em>Formalized Mathematics</em>, 9(<bold>3</bold>):559–564, 2001.
  14. [14] Andrzej Trybulec. Binary operations applied to functions. <em>Formalized Mathematics</em>, 1 (<bold>2</bold>):329–334, 1990.
  15. [15] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. <em>Formalized Mathematics</em>, 1(<bold>3</bold>):569–573, 1990.
DOI: https://doi.org/10.1515/forma-2017-0014 | Journal eISSN: 1898-9934 | Journal ISSN: 1426-2630
Language: English
Page range: 149 - 155
Submitted on: Jun 27, 2017
Published on: Sep 23, 2017
Published by: University of Bialystok
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year
Keywords:

© 2017 Karol Pąk, Artur Korniłowicz, published by University of Bialystok
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.