Have a personal or library account? Click to login
Basel Problem Cover

References

  1. [1] M. Aigner and G. M. Ziegler. Proofs from THE BOOK. Springer-Verlag, Berlin Heidelberg New York, 2004.10.1007/978-3-662-05412-3
  2. [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
  3. [3] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi: 10.1007/978-3-319-20615-817.10.1007/978-3-319-20615-817
  4. [4] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507–513, 1990.
  5. [5] Czesław Byliński. Some properties of restrictions of finite sequences. Formalized Mathematics, 5(2):241–245, 1996.
  6. [6] Augustin Louis Cauchy. Cours d’analyse de l’Ecole royale polytechnique. de l’Imprimerie royale, 1821.
  7. [7] Artur Korniłowicz and Karol Pąk. Basel problem – preliminaries. Formalized Mathematics, 25(2):141–147, 2017. doi: 10.1515/forma-2017-0013.10.1515/forma-2017-0013
  8. [8] Anna Justyna Milewska. The field of complex numbers. Formalized Mathematics, 9(2): 265–269, 2001.
  9. [9] Robert Milewski. The ring of polynomials. Formalized Mathematics, 9(2):339–346, 2001.
  10. [10] Robert Milewski. The evaluation of polynomials. Formalized Mathematics, 9(2):391–395, 2001.
  11. [11] Robert Milewski. Fundamental theorem of algebra. Formalized Mathematics, 9(3):461–470, 2001.
  12. [12] Piotr Rudnicki. Little Bezout theorem (factor theorem). Formalized Mathematics, 12(1): 49–58, 2004.
  13. [13] Christoph Schwarzweller. The binomial theorem for algebraic structures. Formalized Mathematics, 9(3):559–564, 2001.
  14. [14] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1 (2):329–334, 1990.
  15. [15] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569–573, 1990.
DOI: https://doi.org/10.1515/forma-2017-0014 | Journal eISSN: 1898-9934 | Journal ISSN: 1426-2630
Language: English
Page range: 149 - 155
Submitted on: Jun 27, 2017
|
Published on: Sep 23, 2017
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year
Keywords:

© 2017 Karol Pąk, Artur Korniłowicz, published by University of Białystok
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.