Have a personal or library account? Click to login
About Quotient Orders and Ordering Sequences Cover

About Quotient Orders and Ordering Sequences

Open Access
|Sep 2017

References

  1. [1] Grzegorz Bancerek. Tarski’s classes and ranks. <em>Formalized Mathematics</em>, 1(<bold>3</bold>):563–567, 1990.
  2. [2] Grzegorz Bancerek. The fundamental properties of natural numbers. <em>Formalized Mathematics</em>, 1(<bold>1</bold>):41–46, 1990.
  3. [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. <em>Formalized Mathematics</em>, 1(<bold>1</bold>):107–114, 1990.
  4. [4] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, <em>Intelligent Computer Mathematics</em>, volume 9150 of <em>Lecture Notes in Computer Science</em>, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi: <a href="https://doi.org/10.1007/978-3-319-20615-817." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-3-319-20615-817.</a><pub-id pub-id-type="doi"><a href="https://doi.org/10.1007/978-3-319-20615-817" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-3-319-20615-817</a></pub-id>
  5. [5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. <em>Formalized Mathematics</em>, 1(<bold>3</bold>):529–536, 1990.
  6. [6] Czesław Byliński. Functions and their basic properties. <em>Formalized Mathematics</em>, 1(<bold>1</bold>): 55–65, 1990.
  7. [7] Czesław Byliński. Functions from a set to a set. <em>Formalized Mathematics</em>, 1(<bold>1</bold>):153–164, 1990.
  8. [8] Czesław Byliński. Partial functions. <em>Formalized Mathematics</em>, 1(<bold>2</bold>):357–367, 1990.
  9. [9] Czesław Byliński. Some basic properties of sets. <em>Formalized Mathematics</em>, 1(<bold>1</bold>):47–53, 1990.
  10. [10] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. <em>Introduction to algorithms</em>. MIT Press, 3. ed. edition, 2009. ISBN 0-262-53305-7, 978-0-262-53305-8, 978-0-262-03384-8. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://scans.hebis.de/HEBCGI/show.pl?21502893_toc.pdf">http://scans.hebis.de/HEBCGI/show.pl?21502893_toc.pdf</ext-link>.
  11. [11] Agata Darmochwał. Finite sets. <em>Formalized Mathematics</em>, 1(<bold>1</bold>):165–167, 1990.
  12. [12] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. <em>Formalized Mathematics</em>, 1(<bold>4</bold>):703–709, 1990.
  13. [13] Gilbert Lee and Piotr Rudnicki. Dickson’s lemma. <em>Formalized Mathematics</em>, 10(<bold>1</bold>):29–37, 2002.
  14. [14] Michael Maschler, Eilon Solan, and Shmuel Zamir. <em>Game theory</em>. Cambridge Univ. Press, 2013. ISBN 978-1-107-00548-8. doi: <a href="https://doi.org/10.1017/CBO9780511794216." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1017/CBO9780511794216.</a><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1017/CBO9780511794216" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1017/CBO9780511794216</a></dgdoi:pub-id>
  15. [15] Takashi Mitsuishi, Katsumi Wasaki, and Yasunari Shidama. Property of complex functions. <em>Formalized Mathematics</em>, 9(<bold>1</bold>):179–184, 2001.
  16. [16] Yatsuka Nakamura. Sorting operators for finite sequences. <em>Formalized Mathematics</em>, 12 (<bold>1</bold>):1–4, 2004.
  17. [17] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. <em>Formalized Mathematics</em>, 1(<bold>3</bold>):441–444, 1990.
  18. [18] Piotr Rudnicki and Andrzej Trybulec. On same equivalents of well-foundedness. <em>Formalized Mathematics</em>, 6(<bold>3</bold>):339–343, 1997.
  19. [19] Bernd S. W. Schröder. <em>Ordered Sets: An Introduction</em>. Birkhäuser Boston, 2003. ISBN 978-1-4612-6591-7. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://books.google.de/books?id=hg8GCAAAQBAJ">https://books.google.de/books?id=hg8GCAAAQBAJ</ext-link>.
  20. [20] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. <em>Formalized Mathematics</em>, 1(<bold>3</bold>):569–573, 1990.
  21. [21] Wojciech A. Trybulec. Pigeon hole principle. <em>Formalized Mathematics</em>, 1(<bold>3</bold>):575–579, 1990.
  22. [22] Wojciech A. Trybulec and Grzegorz Bancerek. Kuratowski – Zorn lemma. <em>Formalized Mathematics</em>, 1(<bold>2</bold>):387–393, 1990.
DOI: https://doi.org/10.1515/forma-2017-0012 | Journal eISSN: 1898-9934 | Journal ISSN: 1426-2630
Language: English
Page range: 121 - 139
Submitted on: Jun 27, 2017
Published on: Sep 23, 2017
Published by: University of Bialystok
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2017 Sebastian Koch, published by University of Bialystok
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.