Have a personal or library account? Click to login
About Quotient Orders and Ordering Sequences Cover

About Quotient Orders and Ordering Sequences

By: Sebastian Koch  
Open Access
|Sep 2017

References

  1. [1] Grzegorz Bancerek. Tarski’s classes and ranks. Formalized Mathematics, 1(3):563–567, 1990.
  2. [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
  3. [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
  4. [4] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi: 10.1007/978-3-319-20615-817.10.1007/978-3-319-20615-817
  5. [5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
  6. [6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55–65, 1990.
  7. [7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
  8. [8] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
  9. [9] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
  10. [10] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to algorithms. MIT Press, 3. ed. edition, 2009. ISBN 0-262-53305-7, 978-0-262-53305-8, 978-0-262-03384-8. http://scans.hebis.de/HEBCGI/show.pl?21502893_toc.pdf.
  11. [11] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
  12. [12] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703–709, 1990.
  13. [13] Gilbert Lee and Piotr Rudnicki. Dickson’s lemma. Formalized Mathematics, 10(1):29–37, 2002.
  14. [14] Michael Maschler, Eilon Solan, and Shmuel Zamir. Game theory. Cambridge Univ. Press, 2013. ISBN 978-1-107-00548-8. doi: 10.1017/CBO9780511794216.10.1017/CBO9780511794216
  15. [15] Takashi Mitsuishi, Katsumi Wasaki, and Yasunari Shidama. Property of complex functions. Formalized Mathematics, 9(1):179–184, 2001.
  16. [16] Yatsuka Nakamura. Sorting operators for finite sequences. Formalized Mathematics, 12 (1):1–4, 2004.
  17. [17] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441–444, 1990.
  18. [18] Piotr Rudnicki and Andrzej Trybulec. On same equivalents of well-foundedness. Formalized Mathematics, 6(3):339–343, 1997.
  19. [19] Bernd S. W. Schröder. Ordered Sets: An Introduction. Birkhäuser Boston, 2003. ISBN 978-1-4612-6591-7. https://books.google.de/books?id=hg8GCAAAQBAJ.
  20. [20] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569–573, 1990.
  21. [21] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579, 1990.
  22. [22] Wojciech A. Trybulec and Grzegorz Bancerek. Kuratowski – Zorn lemma. Formalized Mathematics, 1(2):387–393, 1990.
DOI: https://doi.org/10.1515/forma-2017-0012 | Journal eISSN: 1898-9934 | Journal ISSN: 1426-2630
Language: English
Page range: 121 - 139
Submitted on: Jun 27, 2017
|
Published on: Sep 23, 2017
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2017 Sebastian Koch, published by University of Białystok
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.