Have a personal or library account? Click to login
Pascal’s Theorem in Real Projective Plane Cover

Pascal’s Theorem in Real Projective Plane

By: Roland Coghetto  
Open Access
|Sep 2017

References

  1. [1] Jesse Alama. Escape to Mizar for ATPs. arXiv preprint arXiv:1204.6615, 2012.
  2. [2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi: 10.1007/978-3-319-20615-817.10.1007/978-3-319-20615-817
  3. [3] Roland Coghetto. Homography in ℝ ℙ2. Formalized Mathematics, 24(4):239–251, 2016. doi: 10.1515/forma-2016-0020.10.1515/forma-2016-0020
  4. [4] Roland Coghetto. Group of homography in real projective plane. Formalized Mathematics, 25(1):55–62, 2017. doi: 10.1515/forma-2017-0005.10.1515/forma-2017-0005
  5. [5] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
  6. [6] Adam Grabowski. Solving two problems in general topology via types. In Types for Proofs and Programs, International Workshop, TYPES 2004, Jouy-en-Josas, France, December 15-18, 2004, Revised Selected Papers, pages 138–153, 2004. doi: 10.1007/116179909.10.1007/116179909
  7. [7] Adam Grabowski. Mechanizing complemented lattices within Mizar system. Journal of Automated Reasoning, 55:211–221, 2015. doi: 10.1007/s10817-015-9333-5.10.1007/s10817-015-9333-5
  8. [8] Kanchun, Hiroshi Yamazaki, and Yatsuka Nakamura. Cross products and tripple vector products in 3-dimensional Euclidean space. Formalized Mathematics, 11(4):381–383, 2003.
  9. [9] Wojciech Leończuk and Krzysztof Prażmowski. A construction of analytical projective space. Formalized Mathematics, 1(4):761–766, 1990.
  10. [10] Wojciech Leończuk and Krzysztof Prażmowski. Projective spaces – part I. Formalized Mathematics, 1(4):767–776, 1990.
  11. [11] Jürgen Richter-Gebert. Pappos’s Theorem: Nine Proofs and Three Variations, pages 3–31. Springer Berlin Heidelberg, 2011. ISBN 978-3-642-17286-1. doi: 10.1007/978-3-642-17286-11.10.1007/978-3-642-17286-11
  12. [12] Piotr Rudnicki and Josef Urban. Escape to ATP for Mizar. In First International Workshop on Proof eXchange for Theorem Proving-PxTP 2011, 2011.
  13. [13] Wojciech Skaba. The collinearity structure. Formalized Mathematics, 1(4):657–659, 1990.
  14. [14] Nobuyuki Tamura and Yatsuka Nakamura. Determinant and inverse of matrices of real elements. Formalized Mathematics, 15(3):127–136, 2007. doi: 10.2478/v10037-007-0014-7.10.2478/v10037-007-0014-7
DOI: https://doi.org/10.1515/forma-2017-0011 | Journal eISSN: 1898-9934 | Journal ISSN: 1426-2630
Language: English
Page range: 107 - 119
Submitted on: Jun 27, 2017
|
Published on: Sep 23, 2017
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2017 Roland Coghetto, published by University of Białystok
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.