Have a personal or library account? Click to login
Vieta’s Formula about the Sum of Roots of Polynomials Cover

Vieta’s Formula about the Sum of Roots of Polynomials

Open Access
|Sep 2017

References

  1. [1] Grzegorz Bancerek. The fundamental properties of natural numbers. <em>Formalized Mathematics</em>, 1(<bold>1</bold>):41–46, 1990.
  2. [2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, <em>Intelligent Computer Mathematics</em>, volume 9150 of <em>Lecture Notes in Computer Science</em>, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:<a href="https://doi.org/10.1007/978-3-319-20615-817." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-3-319-20615-817.</a><pub-id pub-id-type="doi"><a href="https://doi.org/10.1007/978-3-319-20615-817" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-3-319-20615-817</a></pub-id>
  3. [3] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. <em>Formalized Mathematics</em>, 1(<bold>3</bold>):529–536, 1990.
  4. [4] Czesław Byliński. Functions and their basic properties. <em>Formalized Mathematics</em>, 1(<bold>1</bold>): 55–65, 1990.
  5. [5] Czesław Byliński. The sum and product of finite sequences of real numbers. <em>Formalized Mathematics</em>, 1(<bold>4</bold>):661–668, 1990.
  6. [6] Robert Milewski. Natural numbers. <em>Formalized Mathematics</em>, 7(<bold>1</bold>):19–22, 1998.
  7. [7] Robert Milewski. Fundamental theorem of algebra. <em>Formalized Mathematics</em>, 9(<bold>3</bold>):461–470, 2001.
  8. [8] Piotr Rudnicki. Little Bezout theorem (factor theorem). <em>Formalized Mathematics</em>, 12(<bold>1</bold>): 49–58, 2004.
  9. [9] Christoph Schwarzweller. The binomial theorem for algebraic structures. <em>Formalized Mathematics</em>, 9(<bold>3</bold>):559–564, 2001.
  10. [10] Michał J. Trybulec. Integers. <em>Formalized Mathematics</em>, 1(<bold>3</bold>):501–505, 1990.
  11. [11] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. <em>Formalized Mathematics</em>, 1(<bold>3</bold>):569–573, 1990.
  12. [12] E. B. Vinberg. <em>A Course in Algebra</em>. American Mathematical Society, 2003. ISBN 0821834134.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1090/gsm/056" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1090/gsm/056</a></dgdoi:pub-id>
  13. [13] Edmund Woronowicz. Relations and their basic properties. <em>Formalized Mathematics</em>, 1 (<bold>1</bold>):73–83, 1990.
DOI: https://doi.org/10.1515/forma-2017-0008 | Journal eISSN: 1898-9934 | Journal ISSN: 1426-2630
Language: English
Page range: 87 - 92
Submitted on: May 25, 2017
Published on: Sep 23, 2017
Published by: University of Bialystok
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2017 Artur Korniłowicz, Karol Pąk, published by University of Bialystok
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.