Have a personal or library account? Click to login
All Liouville Numbers are Transcendental Cover

All Liouville Numbers are Transcendental

Open Access
|May 2017

References

  1. [1] Tom M. Apostol. Modular Functions and Dirichlet Series in Number Theory. Springer- Verlag, 2nd edition, 1997.
  2. [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
  3. [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
  4. [4] Sophie Bernard, Yves Bertot, Laurence Rideau, and Pierre-Yves Strub. Formal proofs of transcendence for e and _ as an application of multivariate and symmetric polynomials. In Jeremy Avigad and Adam Chlipala, editors, Proceedings of the 5th ACM SIGPLAN Conference on Certified Programs and Proofs, pages 76-87. ACM, 2016. doi: 10.1145/2854065.2854072.10.1145/2854065.2854072
  5. [5] Jesse Bingham. Formalizing a proof that e is transcendental. Journal of Formalized Reasoning, 4:71-84, 2011.
  6. [6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
  7. [7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.
  8. [8] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
  9. [9] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
  10. [10] J.H. Conway and R.K. Guy. The Book of Numbers. Springer-Verlag, 1996.10.1007/978-1-4612-4072-3
  11. [11] Manuel Eberl. Liouville numbers. Archive of Formal Proofs, December 2015. http://isa-afp.org/entries/Liouville_Numbers.shtml, Formal proof development.
  12. [12] Adam Grabowski and Artur Korniłowicz. Introduction to Liouville numbers. Formalized Mathematics, 25(1):39-48, 2017. doi: 10.1515/forma-2017-0003.10.1515/forma-2017-0003
  13. [13] Adam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191-198, 2015. doi: 10.1007/s10817-015-9345-1.10.1007/s10817-015-9345-1
  14. [14] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relatively primes. Formalized Mathematics, 1(5):829-832, 1990.
  15. [15] Joseph Liouville. Nouvelle d´emonstration d’un th´eor`eme sur les irrationnelles alg´ebriques, ins´er´e dans le Compte Rendu de la derni`ere s´eance. Compte Rendu Acad. Sci. Paris, S´er.A (18):910-911, 1844.
  16. [16] Anna Justyna Milewska. The field of complex numbers. Formalized Mathematics, 9(2): 265-269, 2001.
  17. [17] Robert Milewski. The ring of polynomials. Formalized Mathematics, 9(2):339-346, 2001.
  18. [18] Robert Milewski. The evaluation of polynomials. Formalized Mathematics, 9(2):391-395, 2001.
  19. [19] Robert Milewski. Fundamental theorem of algebra. Formalized Mathematics, 9(3):461-470, 2001.
  20. [20] Michał Muzalewski and Lesław W. Szczerba. Construction of finite sequences over ring and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):97-104, 1991.
  21. [21] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1 (3):495-500, 1990.
  22. [22] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569-573, 1990.
  23. [23] Yasushige Watase. Algebraic numbers. Formalized Mathematics, 24(4):291-299, 2016. doi: 10.1515/forma-2016-0025.10.1515/forma-2016-0025
  24. [24] Katarzyna Zawadzka. The sum and product of finite sequences of elements of a field. Formalized Mathematics, 3(2):205-211, 1992.
DOI: https://doi.org/10.1515/forma-2017-0004 | Journal eISSN: 1898-9934 | Journal ISSN: 1426-2630
Language: English
Page range: 49 - 54
Submitted on: Feb 23, 2017
|
Published on: May 11, 2017
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year
Keywords:

© 2017 Artur Korniłowicz, Adam Naumowicz, Adam Grabowski, published by University of Białystok
This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License.