Have a personal or library account? Click to login
Tarski Geometry Axioms – Part II Cover
Open Access
|Dec 2016

References

  1. [1] Czesław Byliński. Introduction to real linear topological spaces. Formalized Mathematics, 13(1):99–107, 2005.
  2. [2] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
  3. [3] Roland Coghetto. Circumcenter, circumcircle and centroid of a triangle. Formalized Mathematics, 24(1):17–26, 2016. doi:10.1515/forma-2016-0002.10.1515/forma-2016-0002
  4. [4] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
  5. [5] Adam Grabowski. Efficient rough set theory merging. Fundamenta Informaticae, 135(4): 371–385, 2014. doi:10.3233/FI-2014-1129.10.3233/FI-2014-1129
  6. [6] Adam Grabowski. Tarski’s geometry modelled in Mizar computerized proof assistant. In Proceedings of the 2016 Federated Conference on Computer Science and Information Systems, FedCSIS 2016, Gdańsk, Poland, September 11–14, 2016, pages 373–381, 2016. doi:10.15439/2016F290.10.15439/2016F290
  7. [7] Adam Grabowski. Mechanizing complemented lattices within Mizar system. Journal of Automated Reasoning, 55:211–221, 2015. doi:10.1007/s10817-015-9333-5.10.1007/s10817-015-9333-5
  8. [8] Adam Grabowski and Christoph Schwarzweller. On duplication in mathematical repositories. In Serge Autexier, Jacques Calmet, David Delahaye, Patrick D. F. Ion, Laurence Rideau, Renaud Rioboo, and Alan P. Sexton, editors, Intelligent Computer Mathematics, 10th International Conference, AISC 2010, 17th Symposium, Calculemus 2010, and 9th International Conference, MKM 2010, Paris, France, July 5–10, 2010. Proceedings, volume 6167 of Lecture Notes in Computer Science, pages 300–314. Springer, 2010. doi:10.1007/978-3-642-14128-7_26.10.1007/978-3-642-14128-7_26
  9. [9] Adam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191–198, 2015. doi:10.1007/s10817-015-9345-1.10.1007/s10817-015-9345-1
  10. [10] Timothy James McKenzie Makarios. A mechanical verification of the independence of Tarski’s Euclidean Axiom. 2012. Master’s thesis.
  11. [11] Julien Narboux. Mechanical theorem proving in Tarski’s geometry. In F. Botana and T. Recio, editors, Automated Deduction in Geometry, volume 4869 of Lecture Notes in Computer Science, pages 139–156. Springer, 2007.10.1007/978-3-540-77356-6_9
  12. [12] William Richter, Adam Grabowski, and Jesse Alama. Tarski geometry axioms. Formalized Mathematics, 22(2):167–176, 2014. doi:10.2478/forma-2014-0017.10.2478/forma-2014-0017
  13. [13] Wolfram Schwabhäuser, Wanda Szmielew, and Alfred Tarski. Metamathematische Methoden in der Geometrie. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1983.10.1007/978-3-642-69418-9
  14. [14] Alfred Tarski and Steven Givant. Tarski’s system of geometry. Bulletin of Symbolic Logic, 5(2):175–214, 1999.10.2307/421089
  15. [15] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445–449, 1990.
  16. [16] Wojciech A. Trybulec. Axioms of incidence. Formalized Mathematics, 1(1):205–213, 1990.
  17. [17] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296, 1990.
DOI: https://doi.org/10.1515/forma-2016-0012 | Journal eISSN: 1898-9934 | Journal ISSN: 1426-2630
Language: English
Page range: 157 - 166
Submitted on: Jun 30, 2016
|
Published on: Dec 8, 2016
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2016 Roland Coghetto, Adam Grabowski, published by University of Białystok
This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License.