Have a personal or library account? Click to login
Polynomially Bounded Sequences and Polynomial Sequences Cover

Polynomially Bounded Sequences and Polynomial Sequences

By: Hiroyuki Okazaki and  Yuichi Futa  
Open Access
|Sep 2015

References

  1. [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
  2. [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
  3. [3] Grzegorz Bancerek. Increasing and continuous ordinal sequences. Formalized Mathematics, 1(4):711-714, 1990.
  4. [4] Grzegorz Bancerek and Piotr Rudnicki. Two programs for SCM. Part I - preliminaries. Formalized Mathematics, 4(1):69-72, 1993.
  5. [5] E.J. Barbeau. Polynomials. Springer, 2003.
  6. [6] Czesław Bylinski. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
  7. [7] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.
  8. [8] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
  9. [9] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
  10. [10] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
  11. [11] Jon Kleinberg and Eva Tardos. Algorithm Design. Addison-Wesley, 2005.
  12. [12] Donald E. Knuth. The Art of Computer Programming, Volume 1: Fundamental Algorithms, Third Edition. Addison-Wesley, 1997.
  13. [13] Artur Korniłowicz. On the real valued functions. Formalized Mathematics, 13(1):181-187, 2005.
  14. [14] Jarosław Kotowicz. The limit of a real function at infinity. Formalized Mathematics, 2 (1):17-28, 1991.
  15. [15] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
  16. [16] Richard Krueger, Piotr Rudnicki, and Paul Shelley. Asymptotic notation. Part I: Theory. Formalized Mathematics, 9(1):135-142, 2001.
  17. [17] Richard Krueger, Piotr Rudnicki, and Paul Shelley. Asymptotic notation. Part II: Examples and problems. Formalized Mathematics, 9(1):143-154, 2001.
  18. [18] Yatsuka Nakamura and Hisashi Ito. Basic properties and concept of selected subsequence of zero based finite sequences. Formalized Mathematics, 16(3):283-288, 2008. doi:10.2478/v10037-008-0034-y.10.2478/v10037-008-0034-y
  19. [19] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
  20. [20] Konrad Raczkowski and Andrzej Nedzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213-216, 1991.
  21. [21] Konrad Raczkowski and Andrzej Nedzusiak. Series. Formalized Mathematics, 2(4):449-452, 1991.
  22. [22] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797-801, 1990.
  23. [23] Yasunari Shidama. The Taylor expansions. Formalized Mathematics, 12(2):195-200, 2004.
  24. [24] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
  25. [25] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
  26. [26] Tetsuya Tsunetou, Grzegorz Bancerek, and Yatsuka Nakamura. Zero-based finite sequences. Formalized Mathematics, 9(4):825-829, 2001.
  27. [27] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.
  28. [28] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
DOI: https://doi.org/10.1515/forma-2015-0017 | Journal eISSN: 1898-9934 | Journal ISSN: 1426-2630
Language: English
Page range: 205 - 213
Submitted on: Jun 30, 2015
Published on: Sep 30, 2015
Published by: University of Białystok
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2015 Hiroyuki Okazaki, Yuichi Futa, published by University of Białystok
This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License.